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Summary

We show how a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
performs better
than doing crude inference over the full network.



Preliminaries: Deep Learning
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Overconfidence

Training on CIFAR10 — Test on SVHN

Airplane (100%)

Dog (100%) Bird (100%)

https://vitalab.github.io/article/2019/07/11/overconfident.html

Data Inefficiency
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Uncertainty Estimation

Different Weight Configurations yield Diverse Predictions:
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Probabilistic Inference in NNs

1. Obtain posterior distribution over weights
p(&Z|W)p(W)
p(2)

2. Marginalise weights to obtain model uncertainty

pP(W|D) =

p(Y*|X*,2) = JP(Y* | X, W)p(W|2)dW
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Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!

* even approximate inference is hard!

Solution(?): Make strong/unrealistic
assumptions on posterior,
e.g. full factorisation

p(Wly, X) =~ [, a(wa)

e|ntractable evidence:

p(D) = Jp(@ | Wp(W)dW

*Intractable predictive: * Deteriorates quality of induced uncertainties!
(Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)
p(Y*|X*, Q) = JP(Y* | X, W)p(W | 2)dW
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Variational Inference
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Existing Approaches

Variational Inference Deep Ensembles

Approximate Distribution g(w) =~ p(w | D)
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Existing Approaches
Variational Inference Deep Ensembles

Loss Loss
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Hamiltonian Monte Carlo Dropout
Monte Carlo
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Disappointing Results

Dropout MFVI Ensemble

Detailed Studies: Try for yourself:

Foong et al. “On the expressiveness of aithub.com/JavierAntoran/

approximate inference in bayesian T i
neural networks.” NeurlPS (2020). Bayesian-Neural-Networks

Wenzel et al. “‘How Good is the Bayes
Posterior in Deep Neural Networks
Really?” ICML (2020)


https://github.com/JavierAntoran/Bayesian-Neural-Networks
https://github.com/JavierAntoran/Bayesian-Neural-Networks
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Observation: Almost all Bayesian deep learning methods try to
do inference over all the weights of the DNN.

Do we really need to
estimate a posterior
over ALL the weights?!
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Ordered Eigenvalues of Covariance Matrix

eigenvalues Sigma

- Prior Var
0.4

0.3 -
Underspecified directions induce uncertaV
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Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning after pruning

pruning
synapses

-—->

pruning g
neurons

(Han 2015)

Question: Can a full DNN’s model uncertainty be well-preserved
by a small subnetwork’s model uncertainty?

Answer: This work shows that Yes!
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Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X Ha /
~q(Wg) H5 W, — W) Ws U AW}
' subnetwork
probabilistic

Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?
2. How do we set the fixed values w: € R of all remaining weights {w,. },.?
3. How do we select the subnetwork W g ?

4. How do we make predictions with the approximate posterior ¢(W) ?
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Proposed Posterior Approximation:

W
p(Wly, X) ~ ¢(W) = p(Wsly, X Ha /
~q(Wg) Hdwr—wr Ws U AW}
' subnetwork
probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?
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Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

af (x, W)
oW w=w

Fin W) = £, W)+ T)W = W), J(x) =

3. Infer a Gaussian posterior for the resulting basis function linear model

0% log p(y | f(X, W)) ;

+A-1
2f(X, W)

p(W) = A (W 0,471 1) p(WI@)zq(W)=/V(W; ’W,H—l) H=1J

4. The NN’s uncertainty is approximated by the uncertainty of the linear model

pOY* | X%, D) = N (y*; fx*, W), JTHHJ(x*) + 621)
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Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /W7), JTGeHH™ ) + 61

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Laplace approx- 1 pretty good for Categorical Likelihoods

(Classification)

W ’|2 Elements

(Bishop 2006)

Problem: H is too large. Intractable to store and invert

* Do Laplace only over a small subnetwork W g
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Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X H5 /
WS H 5 — WS U {Wr}r
subnetwork
= N(Ws;Wiiup, H H 0(Wr =Wirap) probabilistic

Questions:

3. How do we select the subnetwork W g ?
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Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps*1X%,2) || p(v* | X*, D)) Intractable! Y
ne/N . X*eq"

What about similarity in weight space?
(WD) — PW D] 60w, -,

r

Most distances are undefined for distributions with disjoint support x

m) The Wasserstein distance is well defined in this setting. 4/’
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Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; WMAP,H_l) | AN (WS; W]\%AP,H;) H5(Wr — Whrap) |

Intractable, as this depends on all entries of the full network Hessian H x

* Assume that posterior is factorized for dependence only on diagonal entries. /
diag. assumption for subnetwork selection > diag. assumption for inference

N 4

- )
Wasserstein subnetwork selection

1) Estimate a factorized Gaussian posterior over all weights
2) Subnetwork = weights with largest marginal variances

.
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Subnetwork Inference

Proposed Posterior Approximation:

A%
p(Wly, X) = q(W) = p(Wsly, X H5 /
WS H 5 — WS U {WT'}T
subnetwork
~ NWg; W5 i p, H H 0(Wr =Warap) probabilistic

Questions:

4. How do we make predictions with the approximate posterior ¢(W) ?
—> use all weights: integrate out subnetwork &
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for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
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Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

* | * ) * 2
for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

f(x*,w)
softmax ( \/H_%diag(ZS(X* ) )

Predictive Cov. Matrix N(x*) = JxH)TH L T(x") Ye(x*) = Je(x*)T Hy ' Ts(x*)
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1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) Wass 50% (1300 Wass 3% (78) Wass 1% (26) MAP (0)

Diag (2600) Rand 50% (1300) Rand 3% (78) Rand 1% (26) Final layer (50)

Expressive inference over a small subnetwork preserves more
predictive uncertainty than crude inference over the full network!




Interaction Between Network Size and
Subnetwork Size

We compare 4 models:

1. 50 hidden units, 1 hidden layer w;:100, h;:1
2. 100 hidden units, 1 hidden layer $  w;:50, h;:1
3. 50 hidden units, 2 hidden layer w;:50, h;:2
4. 100 hidden units, 2 hidden layer ¢  w;:100, /1;:2
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* Given the same amount of compute, larger models benefit more from subnetwork inference.
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Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights
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* Subnet inference is more robust to

distribution shift than popular baselines!
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We propose a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
and show that this performs better than
doing crude inference over the full network.



