UCL Centre for Inverse Problems in Imaging

Bayesian Deep Learning via Subnetwork Inference

Erik Daxberger

Eric Nalisnick

James Allingham

Javier Antorán

José Miguel Hernández-Lobato

We show how a Bayesian deep learning method

We show how a Bayesian deep learning method that does *expressive inference*

We show how a Bayesian deep learning method that does expressive inference over a carefully chosen subnetwork within a neural network,

We show how a Bayesian deep learning method that does expressive inference over a carefully chosen subnetwork within a neural network, performs better

We show how a Bayesian deep learning method that does expressive inference over a carefully chosen subnetwork within a neural network, performs better than doing crude inference over the full network.

Preliminaries: Deep Learning

1980S-ERA NEURAL NETWORK

DEEP LEARNING NEURAL NETWORK

Output

layer

Identify

combinations

or features

Output: 'George'

Overconfidence

Training on CIFAR10 - Test on SVHN

https://vitalab.github.io/article/2019/07/11/overconfident.html

Overconfidence

Training on CIFAR10 - Test on SVHN

https://vitalab.github.io/article/2019/07/11/overconfident.html

Catastrophic Forgetting

Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Overconfidence

Training on CIFAR10 - Test on SVHN

https://vitalab.github.io/article/2019/07/11/overconfident.html

Data Inefficiency

Catastrophic Forgetting

Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Overconfidence

Training on CIFAR10 - Test on SVHN

https://vitalab.github.io/article/2019/07/11/overconfident.html

Catastrophic Forgetting

Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Data Inefficiency

Probabilistic Inference: A biased coin

Likelihood Prior
$$p(\mathbf{W} | \mathcal{D}) = \frac{p(\mathcal{D} | W)p(W)}{p(\mathcal{D})}$$

Probabilistic Inference: A biased coin

Probabilistic Inference: A biased coin

1. Obtain posterior distribution over weights

$$p(\mathbf{W} | \mathcal{D}) = \frac{p(\mathcal{D} | W)p(W)}{p(\mathcal{D})}$$

1. Obtain posterior distribution over weights

$$p(\mathbf{W} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid W)p(W)}{p(\mathcal{D})}$$

2. Marginalise weights to obtain model uncertainty

$$p(\mathbf{Y}^* | \mathbf{X}^*, \mathcal{D}) = \int p(\mathbf{Y}^* | \mathbf{X}^*, W) p(W | \mathcal{D}) dW$$

Overconfidence

Catastrophic Forgetting

Data Inefficiency

Overconfidence

Uncertainty Estimation

Data Inefficiency

Catastrophic Forgetting

Overconfidence

Data Inefficiency

Catastrophic Forgetting

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

Overconfidence

Data Inefficiency

Catastrophic Forgetting

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

Model Selection

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-learning-approach-to-one-step-active-learning-5ffea59099a2

Overconfidence

Catastrophic Forgetting

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

Data Inefficiency

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-learning-approach-to-one-step-active-learning-5ffea59099a2

Model Selection

Rasmussen & Ghahramani 2000, "Occam's Razor"

The likelihood under a BNN model is very complex and high dimensional.

The likelihood under a BNN model is very complex and high dimensional.

The likelihood under a BNN model is very complex and high dimensional.

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

The likelihood under a BNN model is very complex and high dimensional.

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

Problem: Modern DNNs are too big!

even approximate inference is hard!

The likelihood under a BNN model is very complex and high dimensional.

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

Problem: Modern DNNs are too big!

even approximate inference is hard!

Intractable evidence:

$$p(\mathcal{D}) = \int p(\mathcal{D} \mid W)p(W)dW$$

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

Problem: Modern DNNs are too big!

even approximate inference is hard!

Intractable evidence:

$$p(\mathcal{D}) = \int p(\mathcal{D} \mid W)p(W)dW$$

•Intractable predictive:

$$p(\mathbf{Y}^* | \mathbf{X}^*, \mathcal{D}) = \int p(\mathbf{Y}^* | \mathbf{X}^*, W) p(W | \mathcal{D}) dW$$

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

•Intractable evidence:

$$p(\mathcal{D}) = \int p(\mathcal{D} \mid W)p(W)dW$$

Intractable predictive:

$$p(\mathbf{Y}^* | \mathbf{X}^*, \mathcal{D}) = \int p(\mathbf{Y}^* | \mathbf{X}^*, W) p(W | \mathcal{D}) dW$$

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

Problem: Modern DNNs are too big!

even approximate inference is hard!

Solution(?): Make strong/unrealistic assumptions on posterior, e.g. full factorisation

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx \prod_{d=1}^{D} q(\mathbf{w}_d)$$

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

Intractable evidence:

$$p(\mathcal{D}) = \int p(\mathcal{D} \mid W)p(W)dW$$

Intractable predictive:

$$p(\mathbf{Y}^* | \mathbf{X}^*, \mathcal{D}) = \int p(\mathbf{Y}^* | \mathbf{X}^*, W) p(W | \mathcal{D}) dW$$

OpenAI debuts gigantic GPT-3 language model with 175 billion parameters

Problem: Modern DNNs are too big!

Solution(?): Make strong/unrealistic assumptions on posterior, e.g. full factorisation

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx \prod_{d=1}^{D} q(\mathbf{w}_d)$$

Deteriorates quality of induced uncertainties! (Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)

Variational Inference

Full Covariance

 $|W|^2$ Elements

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

|W| Elements

Variational Inference

Full Covariance

 $|W|^2$ Elements

Mean Field

W Elements

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Monte Carlo Dropout

Hamiltonian Monte Carlo

Monte Carlo Dropout

Hamiltonian Monte Carlo

Monte Carlo Dropout

Detailed Studies:

Foong et al. "On the expressiveness of approximate inference in bayesian neural networks." *NeurIPS* (2020).

Wenzel et al. "How Good is the Bayes Posterior in Deep Neural Networks Really?" *ICML* (2020)

Detailed Studies:

Foong et al. "On the expressiveness of approximate inference in bayesian neural networks." *NeurIPS* (2020).

Wenzel et al. "How Good is the Bayes Posterior in Deep Neural Networks Really?" *ICML* (2020)

Try for yourself:

github.com/JavierAntoran/ Bayesian-Neural-Networks

Observation: Almost all Bayesian deep learning methods try to do inference over **all** the weights of the DNN.

Observation: Almost all Bayesian deep learning methods try to

do inference over **all** the weights of the DNN.

Do we really need to estimate a posterior over **ALL** the weights?!

Ordered Eigenvalues of Covariance Matrix

Strongly specified directions induce confident predictions

Motivation

ldea

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a **small subnetwork**

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a **small subnetwork**

How to find those subnetworks? —> DNN **pruning**, e.g. (Frankle & Carbin 2019)

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a **small subnetwork**

How to find those subnetworks? —> DNN **pruning**, e.g. (Frankle & Carbin 2019)

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a **small subnetwork**

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

Question: Can a full DNN's model uncertainty be well-preserved by a small subnetwork's model uncertainty?

Observation: Due to overparameterization, a DNNs accuracy

is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

Question: Can a full DNN's model uncertainty be well-preserved

by a small subnetwork's model uncertainty?

Answer: This work shows that **Yes!**

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W})$$

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W})$$

 \mathbf{W}

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W})$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W})$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

Questions:

1. How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- **3.** How do we select the subnetwork W_S ?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- **3.** How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Attractive for its post-hoc nature and strong empirical performance!

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

$$p(W) = \mathcal{N}\left(W; 0, \lambda^{-1} \cdot I\right)$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

$$p(W) = \mathcal{N}\left(W; \ 0, \lambda^{-1} \cdot I\right) \quad p(W|\mathcal{D}) \simeq q(W) = \mathcal{N}\left(W; \ \widehat{W}, H^{-1}\right)$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

$$p(W) = \mathcal{N}\left(W; \ 0, \lambda^{-1} \cdot I\right) \quad p(W|\mathcal{D}) \simeq q(W) = \mathcal{N}\left(W; \ \widehat{W}, H^{-1}\right) \quad H = J^{\top} \frac{\partial^2 \log p(y|f(X, W))}{\partial^2 f(X, W)} J + \lambda \cdot I$$

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

$$\widehat{W} = arg \, max_W \left[\log p(y | X, W) + \log p(W) \right].$$

2. Approximate NN with a 1st order Taylor expansion around mode \widehat{W}

$$f_{lin}(x, W) = f(x, \widehat{W}) + \widehat{J}(x)(W - \widehat{W}); \quad \widehat{J}(x) = \frac{\partial f(x, W)}{\partial W}|_{W = \widehat{W}}$$

3. Infer a Gaussian posterior for the resulting basis function linear model

$$p(W) = \mathcal{N}\left(W; \ 0, \lambda^{-1} \cdot I\right) \quad p(W|\mathcal{D}) \simeq q(W) = \mathcal{N}\left(W; \ \widehat{W}, H^{-1}\right) \quad H = J^{\top} \frac{\partial^2 \log p(y|f(X, W))}{\partial^2 f(X, W)} J + \lambda \cdot I$$

4. The NN's uncertainty is approximated by the uncertainty of the linear model

$$p(y^* | x^*, \mathcal{D}) = \mathcal{N}(y^*; f(x^*, \widehat{W}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

$$p(y^* \mid x^*, \mathcal{D}) = \mathcal{N}(y^*; f(x^*, \widehat{W}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

$$p(y^* \mid x^*, \mathcal{D}) = \mathcal{N}(y^*; \mathbf{f}(x^*, \widehat{\mathbf{W}}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods (Classification)

$$p(y^* | x^*, \mathcal{D}) = \mathcal{N}(y^*; \mathbf{f}(x^*, \widehat{\mathbf{W}}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods (Classification)

Problem: H is too large. Intractable to store and invert

$$p(y^* | x^*, \mathcal{D}) = \mathcal{N}(y^*; \mathbf{f}(x^*, \widehat{\mathbf{W}}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods (Classification)

$$|W|^2$$
 Elements

Problem: H is too large. Intractable to store and invert

$$p(y^* | x^*, \mathcal{D}) = \mathcal{N}(y^*; \mathbf{f}(x^*, \widehat{\mathbf{W}}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods (Classification)

 $|W|^2$ Elements

Problem: H is too large. Intractable to store and invert

Do Laplace only over a small subnetwork \mathbf{W}_S

$$p(y^* | x^*, \mathcal{D}) = \mathcal{N}(y^*; \mathbf{f}(x^*, \widehat{\mathbf{W}}), J^{\mathsf{T}}(x^*)H^{-1}J(x^*) + \sigma^2 I)$$

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods (Classification)

$$|\mathbf{w}_{s}|^{2}$$
 Elements

Problem: H is too large. Intractable to store and invert

Do Laplace only over a small subnetwork \mathbf{W}_S

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_S|\mathbf{y}, \mathbf{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$
$$\approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\boldsymbol{y},\boldsymbol{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\boldsymbol{y},\boldsymbol{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S};\boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

$$\text{subnetwork other weights probabilistic deterministic}$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\boldsymbol{y},\boldsymbol{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\boldsymbol{y},\boldsymbol{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S};\boldsymbol{W}_{MAP}^{S},\boldsymbol{H}_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

$$\text{subnetwork other weights probabilistic deterministic}$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$? -> full-covariance Gaussian via Linearised Laplace approximation
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\boldsymbol{y},\boldsymbol{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\boldsymbol{y},\boldsymbol{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S};\boldsymbol{W}_{MAP}^{S},\boldsymbol{H}_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

$$\text{subnetwork other weights probabilistic deterministic}$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$? -> full-covariance Gaussian via Linearised Laplace approximation
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

- 1. How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?

 -> full-covariance Gaussian via Linearised Laplace approximation
- 2. How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$? -> just leave them at their MAP estimates
- 3. How do we select the subnetwork W_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
 - -> full-covariance Gaussian via Linearised Laplace approximation
- 2. How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?

 -> just leave them at their MAP estimates
- **3.** How do we select the subnetwork \mathbf{W}_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

We would like the distribution over functions induced by the subnetwork to match the one induced by the full network.

$$\sup_{n \in \mathcal{N}, X^* \in \mathcal{X}^n} D_{KL}(p_S(y^* | X^*, \mathcal{D}) | | p(y^* | X^*, \mathcal{D}))$$

We would like the distribution over functions induced by the subnetwork to match the one induced by the full network.

$$\sup_{n \in \mathcal{N}, X^* \in \mathcal{X}^n} D_{KL}(p_S(y^* | X^*, \mathcal{D}) | | p(y^* | X^*, \mathcal{D})) \quad \text{Intractable!}$$

We would like the distribution over functions induced by the subnetwork to match the one induced by the full network.

$$\sup_{n \in \mathcal{N}, X^* \in \mathcal{X}^n} D_{KL}(p_S(y^* | X^*, \mathcal{D}) | | p(y^* | X^*, \mathcal{D})) \quad \textbf{Intractable!}$$

What about similarity in weight space?

$$p(W|\mathcal{D}) \quad \longleftarrow \quad p(W_s|\mathcal{D}) \prod_r \delta(w_r - \hat{w}_r)$$

We would like the distribution over functions induced by the subnetwork to match the one induced by the full network.

$$\sup_{n \in \mathcal{N}, X^* \in \mathcal{X}^n} D_{KL}(p_S(y^* | X^*, \mathcal{D}) | | p(y^* | X^*, \mathcal{D})) \quad \textbf{Intractable!}$$

What about similarity in weight space?

$$p(W|\mathcal{D}) \quad \longleftarrow \quad p(W_s|\mathcal{D}) \prod_r \delta(w_r - \hat{w}_r)$$

Most distances are undefined for distributions with disjoint support

We would like the distribution over functions induced by the subnetwork to match the one induced by the full network.

$$\sup_{n \in \mathcal{N}, X^* \in \mathcal{X}^n} D_{KL}(p_S(y^* | X^*, \mathcal{D}) | | p(y^* | X^*, \mathcal{D})) \quad \textbf{Intractable!}$$

What about similarity in weight space?

$$p(W|\mathcal{D}) \quad \longleftarrow \quad p(W_s|\mathcal{D}) \prod_r \delta(w_r - \hat{w}_r)$$

Most distances are undefined for distributions with disjoint support

The Wasserstein distance is well defined in this setting.

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass [full posterior || subnet posterior]

```
min Wass[ full posterior || subnet posterior ]
```

```
= \min \operatorname{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})\ ]
```

```
min Wass[ full posterior \parallel subnet posterior ]
= \min \operatorname{Wass}[ \ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W}) \ ]
\approx \min \operatorname{Wass}[ \ \mathcal{N}(\mathbf{W}; \mathbf{W}_{MAP}, H^{-1}) \parallel
```

```
\begin{aligned} & \min \text{Wass}[ \text{ full posterior } \parallel \text{ subnet posterior }] \\ &= \min \text{Wass}[ \ p(\mathbf{W}|\boldsymbol{y},\boldsymbol{X}) \parallel q(\mathbf{W}) \ ] \\ &\approx \min \text{Wass}[ \ \mathcal{N}\left(\mathbf{W};\boldsymbol{W}_{MAP},\boldsymbol{H}^{-1}\right) \parallel \mathcal{N}\left(\mathbf{W}_{S};\boldsymbol{W}_{MAP}^{S},\boldsymbol{H}_{S}^{-1}\right) \end{aligned}
```

```
\begin{aligned} & \min \text{Wass}[ \text{ full posterior } \| \text{ subnet posterior } ] \\ &= \min \text{Wass}[ \ p(\mathbf{W}|\boldsymbol{y},\boldsymbol{X}) \ \| \ q(\mathbf{W}) \ ] \\ &\approx \min \text{Wass}[ \ \mathcal{N}\left(\mathbf{W};\boldsymbol{W}_{MAP},\boldsymbol{H}^{-1}\right) \ \| \ \mathcal{N}\left(\mathbf{W}_{S};\boldsymbol{W}_{MAP}^{S},\boldsymbol{H}_{S}^{-1}\right) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r}) ] \end{aligned}
```

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior |
= \min \text{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[\mathcal{N}(\mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1}) \parallel \mathcal{N}(\mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})]
```

Intractable, as this depends on all entries of the full network Hessian H.

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior ]
= \min \text{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[ \mathcal{N} \left( \mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1} \right) \parallel \mathcal{N} \left( \mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1} \right) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r}) ]
```

Intractable, as this depends on all entries of the full network Hessian H.

Assume that posterior is **factorized** for dependence only on **diagonal** entries.

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior |
= \min \text{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[ \mathcal{N}\left(\mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1}\right) \parallel \mathcal{N}\left(\mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}\right) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})]
```

Intractable, as this depends on all entries of the full network Hessian H.

Assume that posterior is **factorized** for dependence only on **diagonal** entries.

diag. assumption for subnetwork selection \geq diag. assumption for inference

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior ]
= \min \operatorname{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[\mathcal{N}(\mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1}) \parallel \mathcal{N}(\mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})]
```

Intractable, as this depends on all entries of the full network Hessian H.

Assume that posterior is **factorized** for dependence only on **diagonal** entries.

diag. assumption for subnetwork selection >> diag. assumption for inference

Wasserstein subnetwork selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior ]
= \min \operatorname{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[\mathcal{N}\left(\mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1}\right) \parallel \mathcal{N}\left(\mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}\right) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})]
```

Intractable, as this depends on all entries of the full network Hessian H.

Assume that posterior is **factorized** for dependence only on **diagonal** entries. diag. assumption for subnetwork selection >> diag. assumption for inference

Wasserstein subnetwork selection

Estimate a factorized Gaussian posterior over all weights

Goal: Find subnetwork whose posterior is closest to the full network posterior

```
min Wass full posterior | subnet posterior ]
= \min \operatorname{Wass}[\ p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \parallel q(\mathbf{W})]
\approx \min \operatorname{Wass}[\mathcal{N}(\mathbf{W}; \boldsymbol{W}_{MAP}, H^{-1}) \parallel \mathcal{N}(\mathbf{W}_{S}; \boldsymbol{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})]
```

Intractable, as this depends on all entries of the full network Hessian H.

Assume that posterior is **factorized** for dependence only on **diagonal** entries. diag. assumption for subnetwork selection >> diag. assumption for inference

Wasserstein subnetwork selection

- Estimate a factorized Gaussian posterior over all weights
- Subnetwork = weights with **largest marginal variances**

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
 - -> full-covariance Gaussian via Laplace approximation
- 2. How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?

 -> just leave them at their MAP estimates
- **3.** How do we select the subnetwork \mathbf{W}_S ?
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

subnetwork other weights probabilistic deterministic

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
 - -> full-covariance Gaussian via Laplace approximation
- 2. How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?

 -> just leave them at their MAP estimates
- **3.** How do we select the subnetwork \mathbf{W}_S ?
 - -> min. Wass. distance between subnetwork posterior & full posterior
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

subnetwork other weights probabilistic deterministic

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
 - -> full-covariance Gaussian via Laplace approximation
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
 - -> just leave them at their MAP estimates
- 3. How do we select the subnetwork W_S ?
 - -> min. Wass. distance between subnetwork posterior & full posterior
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?

Proposed Posterior Approximation:

$$p(\mathbf{W}|\mathbf{y}, \mathbf{X}) \approx q(\mathbf{W}) = p(\mathbf{W}_{S}|\mathbf{y}, \mathbf{X}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$\approx q(\mathbf{W}_{S}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{r}^{*})$$

$$= \mathcal{N}(\mathbf{W}_{S}; \mathbf{W}_{MAP}^{S}, H_{S}^{-1}) \prod_{r} \delta(\mathbf{w}_{r} - \mathbf{w}_{MAP}^{r})$$

subnetwork other weights probabilistic deterministic

- **1.** How do we choose and infer the subnetwork posterior $q(\mathbf{W}_S)$?
 - -> full-covariance Gaussian via Laplace approximation
- **2.** How do we set the fixed values $\mathbf{w}_r^* \in \mathbb{R}$ of all remaining weights $\{\mathbf{w}_r\}_r$?
 - -> just leave them at their MAP estimates
- 3. How do we select the subnetwork W_S ?
 - -> min. Wass. distance between subnetwork posterior & full posterior
- **4.** How do we make predictions with the approximate posterior $q(\mathbf{W})$?
 - -> use all weights: integrate out subnetwork & keep others fixed

Making Predictions

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression		
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Classification		

Making Predictions

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	
Predictive $p(\mathbf{y}^* \mathbf{x}^*,\mathcal{D})$ for Classification		

Making Predictions

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), oldsymbol{\Sigma_S(\mathbf{x}^*)} + \sigma^2 I)$
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Classification		

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), oldsymbol{\Sigma_S}(\mathbf{x}^*) + \sigma^2 I)$
Predictive $p(\mathbf{y}^* \mathbf{x}^*,\mathcal{D})$ for Classification		

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*)$$

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	$\mathcal{N}(\mathbf{y}^*; \boldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \boldsymbol{\Sigma_S(\mathbf{x}^*)} + \sigma^2 I)$
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Classification		

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*)$$

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*) \qquad \qquad \underline{\Sigma}_S(\mathbf{x}^*) = \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)^T \widetilde{H}_S^{-1} \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)$$

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; \boldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), oldsymbol{\Sigma_S(\mathbf{x}^*)} + \sigma^2 I)$
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Classification	$\operatorname{softmax}\left(\frac{\boldsymbol{f}(\mathbf{x}^*,\widehat{\mathbf{w}})}{\sqrt{1+\frac{\pi}{8}\mathrm{diag}(\Sigma(\mathbf{x}^*))}}\right)$	

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*)$$

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*) \qquad \qquad \underline{\Sigma}_S(\mathbf{x}^*) = \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)^T \widetilde{H}_S^{-1} \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)$$

	Full Laplace	Subnetwork Laplace
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Regression	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), \Sigma(\mathbf{x}^*) + \sigma^2 I)$	$\mathcal{N}(\mathbf{y}^*; oldsymbol{f}(\mathbf{x}^*, \widehat{\mathbf{w}}), oldsymbol{\Sigma_S}(\mathbf{x}^*) + \sigma^2 I)$
Predictive $p(\mathbf{y}^* \mathbf{x}^*, \mathcal{D})$ for Classification	$\operatorname{softmax}\left(\frac{\boldsymbol{f}(\mathbf{x}^*,\widehat{\mathbf{w}})}{\sqrt{1+\frac{\pi}{8}\operatorname{diag}(\Sigma(\mathbf{x}^*))}}\right)$	$\operatorname{softmax}\left(\frac{f(\mathbf{x}^*,\widehat{\mathbf{w}})}{\sqrt{1+\frac{\pi}{8}\operatorname{diag}(\boldsymbol{\Sigma}_{S}(\mathbf{x}^*))}}\right)$

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*)$$

$$\Sigma(\mathbf{x}^*) = \widehat{\boldsymbol{J}}(\mathbf{x}^*)^T \widetilde{H}^{-1} \widehat{\boldsymbol{J}}(\mathbf{x}^*) \qquad \qquad \underline{\Sigma}_S(\mathbf{x}^*) = \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)^T \widetilde{H}_S^{-1} \widehat{\boldsymbol{J}}_S(\mathbf{x}^*)$$

1 MAP Estimation

1 MAP Estimation

2 Subnet Selection

- 1 MAP Estimation
- 2 Subnet Selection

3 Bayes. Inference

- 1 MAP Estimation
- 2 Subnet Selection

- Bayes. Inference
- 4 Prediction

Model: 2 hidden layer, fully-connected NN

with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN

with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN

with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN **Goal:** test 'in-between' predictive with a total of 2600 weights uncertainty (Foong 2019)

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Model: 2 hidden layer, fully-connected NN with a total of 2600 weights

Goal: test 'in-between' predictive uncertainty (Foong 2019)

Expressive inference over a small subnetwork preserves **more predictive uncertainty** than crude inference over the full network!

Interaction Between Network Size and Subnetwork Size

We compare 4 models:

- 1. 50 hidden units, 1 hidden layer $w_i:100, h_i:1$
- 2. 100 hidden units, 1 hidden layer w_i :50, h_i :1
- 3. 50 hidden units, 2 hidden layer $+ w_i:50, h_i:2$
- 4. 100 hidden units, 2 hidden layer \bullet $w_i:100, h_i:2$

Interaction Between Network Size and Subnetwork Size

 $w_i:100, h_i:1$

We compare 4 models:

- 1. 50 hidden units, 1 hidden layer
- 2. 100 hidden units, 1 hidden layer w_i :50, h_i :1
- 3. 50 hidden units, 2 hidden layer $+ w_i:50, h_i:2$
- 4. 100 hidden units, 2 hidden layer ϕ $w_i:100, h_i:2$

Interaction Between Network Size and Subnetwork Size

We compare 4 models:

- 1. 50 hidden units, 1 hidden layer $w_i:100, h_i:1$
- 2. 100 hidden units, 1 hidden layer $w_i:50, h_i:1$
- 3. 50 hidden units, 2 hidden layer $+ w_i:50, h_i:2$
- 4. 100 hidden units, 2 hidden layer ϕ $w_i:100, h_i:2$

Model:

ResNet-18 with **11M** weights

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Model: Baselines:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

MAP

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just **42K (0.38%)** weights

- MAP
- Diagonal Laplace

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just **42K (0.38%)** weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just **42K (0.38%)** weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just **42K (0.38%)** weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just **42K (0.38%)** weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Model:

ResNet-18 with **11M** weights

Wasserstein subnetwork inference subnet of just 42K (0.38%) weights

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

Subnet inference is more robust to distribution shift than popular baselines!

We propose a Bayesian deep learning method

We propose a Bayesian deep learning method that does *expressive inference*

We propose a Bayesian deep learning method that does *expressive inference* over a carefully chosen *subnetwork* within a neural network,

We propose a Bayesian deep learning method that does *expressive inference* over a carefully chosen *subnetwork* within a neural network, and show that this *performs better* than doing crude inference over the full network.