UCL Centre for Inverse Problems in Imaging

Bayesian Deep Learning
via Subnetwork Inference

José Miguel

Erik Daxberger Eric Nalisnick James Allingham Javier Antorn Hernandez-Lobato

Max Planck Institute for

_ -
: X

OF AMSTERDAM

T UNIVERSITY OF
P CAMBRIDGE

Summary

Summary

We show how a Bayesian deep learning method

Summary

We show how a Bayesian deep learning method
that does expressive inference

Summary

We show how a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,

Summary

We show how a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
performs better

Summary

We show how a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
performs better
than doing crude inference over the full network.

Preliminaries: Deep Learning

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK

Hidden Multiple hidden layers
process hierarchical features

)

Input
layer an . r O
=S IANSANN ver

-~ NS S S 72 AN 7
SNl IS NSS4
N~ IR GIAIIR G~
L ERRESIBERRGEA)
X PN BT ZEEED)
ve &, R BEL P o 3000 RO
A X ?c;' RE A %

«“r ..

TOVT SRONINST SAOTATeN Sl
Ll 3¢ \\\v Input A Il‘v“\\t\\— ";",,I'/A é‘\\;\\?‘; ’1/’,: ,7“%:\‘:\\“:\ i ,‘,',‘g
2522200 ZROQNN RSN 2RO
2\ A ”“%. SN .-’4;',‘*%‘3?04/". iy
NV 2N\ 2\ Y72
Identi //, \\\ //, SO\ W combinations
light/dark | W ' or features
pixel value \ Identify |dentify |dentify /’
Links carry signals edges combinations features
from one node ~— of edges —7

to another, boosting
or damping them -
according to each ‘ |=

link's 'weight'.

= HEF "H® ME2 LA

Waldrop 2019, "What are the limits of deep learning?"

K EISSO S SRS Output:

Issues with Deep Learning

Issues with Deep Learning

Overconfidence

Training on CIFAR10 — Test on SVHN

Dog (100%) Bird (100%) Airplane (100%)

https://vitalab.github.io/article/2019/07/11/overconfident.html

Issues with Deep Learning

Overconfidence

Training on CIFAR10 — Test on SVHN

Dog (100%) Bird (100%)

Airplane (100%)

https://vitalab.github.io/article/2019/07/11/overconfident.html

Catastrophic Forgetting

Learning Task 1
Change |
) Linp(X)
| AR
? Py =1)
- Py =0)>, ;
Decision Boundary Updated Decision Boundary Updated Dep{sion Boundary
f(x; 00) =(.: :.‘ f(x; 01) = 0 /f :.\ f(x;lel) = 0

Catastrophic Forgetting Ideal Case

Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Issues with Deep Learnin

Overconfidence Catastrophic Forgetting

Training on CIFAR10 - Test on SVHN " LearningTask 1

| [e |y—1) o |
’ - Py = 0)r | | (| :- |
Decision Boundary Updated Decision Boundary ! | Updated Decision Boundary |

Dog (100%) Bird (100%) Airplane (100%) NS L1 b : " Catastrophi e P L — .

Catastrophic Forgetting Ideal Case

https://vitalab.github.io/article/2019/07/11/overconfident.html Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Data Inefficiency

Issues with

Overconfidence

Training on CIFAR10 — Test on SVHN

Airplane (100%)

Dog (100%) Bird (100%)

https://vitalab.github.io/article/2019/07/11/overconfident.html

Data Inefficiency

Deep Learnin

Catastrophic Forgetting

{pxly = 1)

pXly=0)"
Decision Boundary Updated Decision Boundary Updated Deg{sion Boundary
f(x; 00) =0 f(xl 01) 0 f(x;'el) =0
Catastrophlc Forgetting Ideal Case

Kolouri et al. 2019, "Attention-Based Selective Plasticity"

Model Selection

1 Hidden Layer 5 Hidden Layer 20 Hidden Layer

6
100
4
4 75
2 2 N AN X " !l 50
o X + \
¥ K AISEN, A
0 ¥ / 25
0 \
- } X *,-_/». X
= -2 ' 00
-2
-4 -25
-4
. -5.0
-6 -
s 75

-100 -075 -050 -025 0.00 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100

Probabilistic Inference: A biased coin

Likelihood Prior
N I'4
(W2 = P2

p(2D)

Probabilistic Inference: A biased coin

Likelihood Prior
@ Wp()
p p
W|9D) =
p(W | D) D)

\

I .

Probabilistic Inference: A biased coin

Likelihood Prior
N '
W) < P2 W)
p(D) |

\

I’ .

N w S (é)]] ~
T T T T

— prior, a=b=1
—2 heads, 0 tails
- o ML (2, 0)

10 heads, 40 tails

¢
|
I
|
[
I
ML (10, 40) :
|
I
|
[
|
|
[
[
|
[
[

0.4 0.5 0.6 0.7 0.8 0.9

p(r = heads)

Uncertainty Estimation

Different Weight Configurations yield Diverse Predictions:

Uncertainty Estimation

Different Weight Configurations yield Diverse Predictions:

AAAAAAAAAAAAAAA

-5-4-3-2-1 01).’(26345678910

Uncertainty Estimation

Different Weight Configurations yield Diverse Predictions:

Weights
2 ot g
+ + 1‘/ /‘f\\ \ \ A
Y \ -
// A /\\/
f\‘_ j / \\\\ / \
| /
ot + S 0 p / /// (
+ " { ~ ¥/
~— /:) /
+ e A TN
+ N
\\ /
-2 + —g W, 7

5-4-32-1 0123456728910 543-2-1012345¢6789
(X, u) (X, U,)

Uncertainty Estimation

Different Weight Configurations yield Diverse Predictions:

Loss
Weights

2 . + 2 & \\) - ‘/;’ﬁ\\ : \ // \\\) /) i\,\- 2
+ §~ ‘/_;’/_, !\ // \\\\\ I/’ \(’ \ / \\ ;"’

0 ~ 0fF /% </ / e / \ =~ 0
x \// - / /7N 7\ // \>.</
* + = - - ‘\ //’/\“{i/ \ =

+ W\ 4 W/
-2 N -2 J -2
5432101234586 78 910 5-4-3-2-1 0123456789 5432101234567 8¢
(X, u) (X, U) (x,, u)

Probabilistic Inference in NNs

Probabilistic Inference in NNs

Probabilistic Inference in NNs

Probabilistic Inference in NNs

1. Obtain posterior distribution over weights
p(&Z|W)p(W)

W|9D) =
p(W|9) D)

Probabilistic Inference in NNs

1. Obtain posterior distribution over weights
p(&Z|W)p(W)
p(2)

2. Marginalise weights to obtain model uncertainty

pP(W|D) =

p(Y*|X*,2) = JP(Y* | X, W)p(W|2)dW

Motivation: Why Probabilistic
Deep Learning?

Overconfidence Catastrophic Forgetting

Data Inefficiency Model Selection

Motivation: Why Probabilistic
Deep Learning?

Catastrophic Forgetting

=) Uncertainty Estimation
|

—
p | 0
x';.-
S
~—

=2t

AAAAAAAAAAAAAA

-5-4-3-2-1 0 1)%63456789
t’

Data Inefficiency Model Selection

Motivation: Why Probabilistic
Deep Learning?

= Uncertainty Estimation = Continual Learning
Step A: Convert DNN to GP functional prior ?tep B: Find Memorable Past
Al) f(x)
’5... +
o 0
=2t

5-4-3-2-1 01 234567 8¢
(X, u)

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

Data Inefficiency Model Selection

Motivation: Why Probabilistic
Deep Learning?

5-4-3-2-1 012345678 ¢
(X, u)

Machine learning
model

The pool-based
active learning cycle

Unlabeled
data pool
)

Annotator

(human or machine) Select queries

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-

learning-approach-to-one-step-active-learning-5ffea59099a2

=§ Continual Learning

Step A: Convert DNN to GP functional prior ~ Step B: Find Memorable Past
) f(@)

.
Old data

Old weights

Step C: Train weights with functional regularisation of memorable past
f(z)
New weights

% FROMP
y—= @
*

Optimal weights

New data

w1

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

Model Selection

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-

Motivation: Why Probabilistic
Deep Learning?

2-
’5.-
5:.- 0
=2t

5-4-3-2-1 012345678 ¢
(X, u)

Machine learning
model

The pool-based
active learning cycle

Unlabeled
data pool
)

Annotator

(human or machine) Select queries

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-

learning-approach-to-one-step-active-learning-5ffea59099a2

=§ Continual Learning

Step A: Convert DNN to GP functional prior ~ Step B: Find Memorable Past
) f(@)

.
Old data

Old weights

Step C: Train weights with functional regularisation of memorable past
f(z)
New weights

FROMP
1y = @
*

Optimal weights

New data

w1

Pan et al. 2020, "Continual Deep Learning by Functional Regularisation of Memorable Past"

=) Marginal Likelihood
A

too simple

P(YIM)

\ "just right"
too complex
-

Y
All possible data sets

Rasmussen & Ghahramani 2000, "Occam's Razor"

https://medium.com/@kaleajit27/apaperaday-week1-a-meta-

Why This Is Difficult

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic
GPT-3 language model with
175 billion parameters

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!
* even approximate inference is hard!

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!
* even approximate inference is hard!

e|ntractable evidence:

p(D) = Jp(@ | Wp(W)dW

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!

* even approximate inference is hard!

e|ntractable evidence:

p(D) = Jp(@ | Wp(W)dW

eIntractable predictive:

p(Y*|X*,2) = [p(Y* | X*, W)p(W|2)dW

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!

* even approximate inference is hard!

Solution(?): Make strong/unrealistic
assumptions on posterior,
e.g. full factorisation

p(Wly, X) =~ [, a(wa)

e|ntractable evidence:

p(D) = Jp(@ | Wp(W)dW

eIntractable predictive:

p(Y*|X*,2) = JP(Y* | X*, Wip(W|2)dW

Why This Is Difficult

The likelihood under a BNN model is very complex and high dimensional.

OpenAl debuts gigantic

GPT-3 language model with
175 billion parameters

Problem: Modern DNNs are too big!

* even approximate inference is hard!

Solution(?): Make strong/unrealistic
assumptions on posterior,
e.g. full factorisation

p(Wly, X) =~ [, a(wa)

e|ntractable evidence:

p(D) = Jp(@ | Wp(W)dW

*Intractable predictive: * Deteriorates quality of induced uncertainties!
(Ovadia 2019, Fort 2019, Foong 2019, Ashukha 2020)
p(Y*|X*, Q) = JP(Y* | X, W)p(W | 2)dW

Existing Approaches

Existing Approaches

Variational Inference

Existing Approaches

Variational Inference

Loss‘ ;

Weights

Existing Approaches

Variational Inference

g Approximate Distribution gw) = p(w|D)
Loss ’

! ’

1 Y 4

. ¢

Weights

Existing Approaches

Variational Inference

Approximate Distribution g(w) =~ p(w | D)

Loss

Weights

Full Covariance

| W|* Elements

Existing Approaches

Variational Inference

Loss

Full Covariance Mean Field

2 13- 45
RyRes -
L s R
s
i _l F
B

L3RI
1

RESED- N

“’éﬁ i
e

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Loss

Mean Field

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Loss Loss

Weights

Mean Field

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Loss Loss

Weights

Mean Field

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Loss Loss

Weights

Mean Field

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Loss Loss

Weights

Mean Field

| W|* Elements | W| Elements

Existing Approaches

Variational Inference Deep Ensembles

Approximate Distribution g(w) =~ p(w | D)

Loss Loss

Weights Weights

n L] ’ -~ 77N\
Full Covariance Mean Field 2t N\ e NN
/ \/ 47N\ I\ AN
/ ’ / \\\‘ / 7 =7 NS
rr / NN ! / N
=1 -~ ! \\ / \\\\ N NS //\\ *
A F“HFI'I[:':-'-;:.53? 1 "/-+ // N, / \
e hime >
iR

T Fﬁ!

—
~
~
-~
”
7’
4
~~
]
\
~
~
///&
A
\/)
{/\>
N =
~
~
~
-
-
~
~
~
~
-
-
-

g"‘],r‘i 135
SRS
e
e o
o~
|
N
r /;5’
127
K
~
N
N
N ~
7/
\
~
I'd
N
-
(

AU 50, JIEEANEE S

lxygﬁggi g-*

-

Fan

IR I
K
=
Il 4l
Efllgﬁ
x

n:-

| W |2 Elements | W| Elements

Existing Approaches
Variational Inference Deep Ensembles

Loss Loss

Weights

u = ’ -~ 7N\
Full Covariance Mean Field 2r N T N SN
/ ,l/ ,/ \\\\\ ’I \ // _- A\\ ~.
’ A A / / AN
/ // \\ / \\\ /// W/ \\// //\\ N
N,

C N "'. - '..v
T
Sl |
e 0

'\. W 1
B
¥
5

a8 5

5 #
4

. TRALIT i
: FE PR
5 3 -5 t&ﬁ

RERAIE IR i s ;-.:';;%i ‘

R = potts q 3 = W

et bt ¢ = ::}:3’ Etxgggﬂ

| W|* Elements | W| Elements -5-4-3-2-1 0 1 2

t’

ot

345678 910
ut)

More Existing Approaches

More Existing Approaches

Hamiltonian
Monte Carlo

More Existing Approaches

Hamiltonian Monte Carlo Dropout
Monte Carlo

More Existing Approaches

Hamiltonian Monte Carlo Dropout
Monte Carlo

/
/ N\ I/ -
/
// !\ ' \\\\\ ’//\\/ / 7\ i
-~ / \ 7/ /
»‘—4-\ / ~ II/ /(~ / \
0[AN / yosN /
AR S - ;o\ /
</ Nos 70\ / \ /
/72 / \ /
N \ /
</

\ 4
W 4
Wy /
/
_2 - \l\ P

AAAAAAAAA

More Existing Approaches

Hamiltonian Monte Carlo Dropout
Monte Carlo

/
/ N\ I/ -
/
// !\ ' \\\\\ ’//\\/ / 7\ i
-~ / \ 7/ /
»‘—4-\ / ~ II/ /(~ / \
0[AN / yosN /
AR S - ;o\ /
</ Nos 70\ / \ /
/72 / \ /
N \ /
</

\ 4
W 4
Wy /
/
_2 - \l\ P

AAAAAAAAA

Uy

.

Disappointing Results

Dropout MFVI

Disappointing Results

Dropout MFVI
; Y y
Uy

Disappointing Results

Dropout MFVI Ensemble
: X g

Disappointing Results

Dropout MFVI Ensemble

Detailed Studies:

Foong et al. “On the expressiveness of
approximate inference in bayesian
neural networks.” NeurlPS (2020).

Wenzel et al. “‘How Good is the Bayes
Posterior in Deep Neural Networks
Really?” ICML (2020)

Disappointing Results

Dropout MFVI Ensemble

Detailed Studies: Try for yourself:

Foong et al. “On the expressiveness of aithub.com/JavierAntoran/

approximate inference in bayesian T i
neural networks.” NeurlPS (2020). Bayesian-Neural-Networks

Wenzel et al. “‘How Good is the Bayes
Posterior in Deep Neural Networks
Really?” ICML (2020)

https://github.com/JavierAntoran/Bayesian-Neural-Networks
https://github.com/JavierAntoran/Bayesian-Neural-Networks

Motivation

Motivation

Observation: Almost all Bayesian deep learning methods try to
do inference over all the weights of the DNN.

Motivation

Observation: Almost all Bayesian deep learning methods try to
do inference over all the weights of the DNN.

Do we really need to
estimate a posterior
over ALL the weights?!

Motivation

Ordered Eigenvalues of Covariance Matrix

) eigenvalues Sigma
e
g ——— Prior Var
0.4 1
0.3 -
:
0.2 - §
0.1 - o
-
=
0.0 - ‘-

0 500 1000 1500 2000 2500

Motivation

Ordered Eigenvalues of Covariance Matrix

» eigenvalues Sigma
—— Prior Var

0.4 §

0.3
Underspecified directions induce uncertainty

000 0 e® i

0.2 1

0.1 1

.
8
0.0 - L

0 500 1000 1500 2000 2500

Motivation

Ordered Eigenvalues of Covariance Matrix

eigenvalues Sigma

- Prior Var
0.4

0.3 -
Underspecified directions induce uncertainty

0.2 1

0.1 1

0.0

6 560 IObO 15'00 20b0 2500
Strongly specified directions induce confident predictions

Motivation

Ordered Eigenvalues of Covariance Matrix

eigenvalues Sigma

- Prior Var
0.4

0.3 -
Underspecified directions induce uncertaV
0.2 -

Most directions match prior

0.1 -

0.0

6 560 IObO 15'00 ZObO 2500
Strongly specified directions induce confident predictions

Weight Space:

Motivation

Wi

Weight Space:

Full Covariance
g)
| W

Motivation

Wi

Weight Space:

Full Covariance
g)
| W

Motivation

Wi

Top-k Eigenbasis
kX |W]

Weight Space:

Top-k Axis Alighed Basis

k2

Full Covariance
g)
| W

Motivation

Wi

Top-k Eigenbasis
kX |W]

ldea

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning after pruning

pruning
synapses

-—->

pruning
neurons

(Han 2015)

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning after pruning

pruning
synapses

-—->

pruning g
neurons

(Han 2015)

Question: Can a full DNN’s model uncertainty be well-preserved
by a small subnetwork’s model uncertainty?

ldea

Observation: Due to overparameterization, a DNNs accuracy
Is well-preserved by a small subnetwork

How to find those subnetworks? —> DNN pruning, e.g. (Frankle & Carbin 2019)

before pruning after pruning

pruning
synapses

-—->

pruning g
neurons

(Han 2015)

Question: Can a full DNN’s model uncertainty be well-preserved
by a small subnetwork’s model uncertainty?

Answer: This work shows that Yes!

Subnetwork Inference

Proposed Posterior Approximation:

p(Wly, X) = ¢(W)

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) = ¢(W)

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) ~ ¢(W) /
W

subnetwork

Subnetwork Inference

Proposed Posterior Approximation:
W

p(Wly, X) = ¢(W) /
WS U {Wr}r

subnetwork

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) = ¢(W) = p(Wsly, X)][(w, —w}) /
WS U {Wr}r

subnetwork

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) = ¢(W) = p(Wsly, X) | [6(w, —w}) /
WS U {Wr}r

subnetwork

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) ~ ¢(W) = p(Wsly, X) || (w, — wy) /
WS U {Wr}r

subnetwork

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) ~ ¢(W) = p(Wsly, X) || (w, — wy) /
WS U {Wr}r

subnetwork
probabilistic

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) ~ ¢(W) = p(Wsly, X) || (w, — wy) /
WS U {Wr}r

subnetwork
probabilistic

Subnetwork Inference

Proposed Posterior Approximation: W

p(Wly, X) ~ (W) =[p(Wsly, X) | [66w, — w;) /
~q(Ws) []o(w, —w?) Wy U {w:},

subnetwork
probabilistic

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) = p(Wsly, X)] o(w. —w;) /
~¢(Ws) []o(w, —w}) Ws U (W}
' subnetwork
probabilistic

Questions:

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ ¢(W) = p(Wsly, X Ha /
~q(Wg) Hdwr—wr Ws U AW}
' subnetwork
probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X Ha /
~q(Wg) H6 W, — W) Ws U AW}
' subnetwork
probabilistic

Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?

2. How do we set the fixed values w: € R of all remaining weights {w,. },.?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X Ha /
~q(Wg) H5 W, — W) Ws U AW}
' subnetwork
probabilistic

Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?
2. How do we set the fixed values w: € R of all remaining weights {w,. },.?

3. How do we select the subnetwork W g ?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X Ha /
~q(Wg) H5 W, — W) Ws U AW}
' subnetwork
probabilistic

Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?
2. How do we set the fixed values w: € R of all remaining weights {w,. },.?
3. How do we select the subnetwork W g ?

4. How do we make predictions with the approximate posterior ¢(W) ?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ ¢(W) = p(Wsly, X Ha /
~q(Wg) Hdwr—wr Ws U AW}
' subnetwork
probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?

Linearised Laplace Approximation

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

af (x, W)
oW w=w

Fin W) = £, W)+ T)W = W), J(x) =

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

of (x, W)

i W) = for, W)+ TW = W T =—"- 1y

3. Infer a Gaussian posterior for the resulting basis function linear model

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

of (x, W)

i W) = for, W)+ TW = W T =—"- 1y

3. Infer a Gaussian posterior for the resulting basis function linear model

p(W) = (W;0,47"-1)

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

of (x, W)

i W) = for, W)+ TW = W T =—"- 1y

3. Infer a Gaussian posterior for the resulting basis function linear model

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

af (x, W)
oW w=w

Fin W) = £, W)+ T)W = W), J(x) =

3. Infer a Gaussian posterior for the resulting basis function linear model

0% log p(y | f(X, W)) ;

+A-1
2f(X, W)

p(W) = A (W 0,471 1) p(WI@)zq(W)=/V(W; ’W,H—l) H=1J

Linearised Laplace Approximation

Attractive for its post-hoc nature and strong empirical performance!

1. Train a regular NN (with SGD, Adam, etc)

S

W =argmax,, [logp(y | X, W) + Ing(W)] :

2. Approximate NN with a 1st order Taylor expansion around mode /V[7

af (x, W)
oW w=w

Fin W) = £, W)+ T)W = W), J(x) =

3. Infer a Gaussian posterior for the resulting basis function linear model

0% log p(y | f(X, W)) ;

+A-1
2f(X, W)

p(W) = A (W 0,471 1) p(WI@)zq(W)=/V(W; ’W,H—l) H=1J

4. The NN’s uncertainty is approximated by the uncertainty of the linear model

pOY* | X%, D) = N (y*; fx*, W), JTHHJ(x*) + 621)

Linearised Laplace Approximation

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /V[7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /V[7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Laplace approx. |

(Bishop 2006)

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods
(Classification)

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /V[7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Laplace approx. |

(Bishop 2006)

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods
(Classification)

Problem: H is too large. Intractable to store and invert

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /Vl7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Laplace approx. |

(Bishop 2006)

Problem: H is too large. Intractable to store and invert

Exact for Gaussian Likelihoods (Regression)

Pretty good for Categorical Likelihoods
(Classification)

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /Vl7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Laplace approx- 1 pretty good for Categorical Likelihoods

(Classification)

(Bishop 2006)

Problem: H is too large. Intractable to store and invert

* Do Laplace only over a small subnetwork W g

Linearised Laplace Approximation

pOY*|x*, D) = N (y*; f(x*F, /W7), JTGeHH™) + 61

Preserves mean of pre-trained NN

Exact for Gaussian Likelihoods (Regression)

Laplace approx- 1 pretty good for Categorical Likelihoods

(Classification)

W ’|2 Elements

(Bishop 2006)

Problem: H is too large. Intractable to store and invert

* Do Laplace only over a small subnetwork W g

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ ¢(W) = p(Wsly, X Ha /
~q(Wg) H5W7~—W7~ Ws U AW}
' subnetwork
probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?

Subnetwork Inference

Proposed Posterior Approximation:

A\%Y%
p(Wly, X) ~ (W) =p(Wsly, X H 5(w /
WS H 5 — WS U {Wr}r
subnetwork
= N(Wg; Wiiap, H H 0(wr —Wrrap) probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) = o(W) = p(Wisly, X Ha /
WS H5 — WS U {wr}r
subnetwork
—“N(Wg; W2, p, H Hé —Whrap) probabilistic
Questions:

1. How do we choose and infer the subnetwork posterior ¢(Ws)?
—> full-covariance Gaussian via Linearised Laplace approximation

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ q(W) = p(Wsly, X H5 /
WS H 5 — WS U {Wr}r
subnetwork
—“N(Wg; W2, p, H H 6(w, —Wirap) probabilistic

Questions:

2. How do we set the fixed values w: € R of all remaining weights {w,. },.?

Subnetwork Inference

Proposed Posterior Approximation:

A\%Y%
p(Wly, X) = q(W) = p(Wsly, X H5 /
WS H 5 — WS U {WT'}T
subnetwork
~N(Wg; WS, p, H H 0(Wr —Wizap) probabilistic

Questions:

2. How do we set the fixed values w: € R of all remaining weights {w,. },.?

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X H5 /
WS H 5 — WS U {Wr}r
subnetwork
= N(Ws;Wiiup, H H 0(Wr =Wirap) probabilistic

Questions:

3. How do we select the subnetwork W g ?

Subnetwork Selection

Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps* | X, D) | | p(y* | X*, D))
neN X*eqdm

Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps*1X%,2) || p(v* | X*, D)) Intractable! Y
ne/N . X*eq"

Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps*1X%,2) || p(v* | X*, D)) Intractable! Y
ne/N . X*eq"

What about similarity in weight space?

(WD) — PW D] 60w, -,

Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps*1X%,2) || p(v* | X*, D)) Intractable! Y
ne/N . X*eq"

What about similarity in weight space?

(WD) — PW D] 60w, -,

r

Most distances are undefined for distributions with disjoint support x

Subnetwork Selection

We would like the distribution over functions induced by the
subnetwork to match the one induced by the full network.

sup Dy (ps*1X%,2) || p(v* | X*, D)) Intractable! Y
ne/N . X*eq"

What about similarity in weight space?
(WD) — PW D] 60w, -,

r

Most distances are undefined for distributions with disjoint support x

m) The Wasserstein distance is well defined in this setting. 4/’

Subnetwork Selection

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |

= min Wass| p(W|y, X) || ¢(W) |

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; Wirap, H_l) |

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N (W; Wyap, H ') || N(Wis; Wyap, Hg ')

Sub

network Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass
= min Wass

~ min Wass

| full posterior || subnet posterior |

p(Wly, X) || ¢q(W) |

N (W;Wyap, H) || N(Wss Wigap, H) H5(Wr — Warap) |

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; WMAP,H_l) | AN (WS; W]\%AP,HSTl) H5(WT — Whrap) |

Intractable, as this depends on all entries of the full network Hessian H x

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; WMAP,H_l) | AN (WS; W]\S/_,AP,Hgl) Hé(wr — Whrap) |

Intractable, as this depends on all entries of the full network Hessian H x

* Assume that posterior is factorized for dependence only on diagonal entries. /

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; WMAP,H_l) | AN (WS; W]\S/_,AP,Hgl) Hé(wr — Whrap) |

Intractable, as this depends on all entries of the full network Hessian H. x

* Assume that posterior is factorized for dependence only on diagonal entries. \/

diag. assumption for subnetwork selection > diag. assumption for inference

Sub

network Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass
= min Wass

~ min Wass

Intractable,

| full posterior || subnet posterior |

p(Wly, X) || ¢q(W) |

N (W;Wyap, H) || N(Wss Wigap, H) H5(Wr — Warap) |

as this depends on all entries of the full network Hessian H. x

* Assume that posterior is factorized for dependence only on diagonal entries. /

diag. assumption for subnetwork selection > diag. assumption for inference

N 4

e

Wasserstein subnetwork selection

Sub

network Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass
= min Wass

~ min Wass

Intractable,

| full posterior || subnet posterior |

p(Wly, X) || ¢q(W) |

N (W;Wyap, H) || N(Wss Wigap, H) H5(Wr — Warap) |

as this depends on all entries of the full network Hessian H. x

* Assume that posterior is factorized for dependence only on diagonal entries. /

diag. assumption for subnetwork selection > diag. assumption for inference

N 4

r

.

Wasserstein subnetwork selection
1) Estimate a factorized Gaussian posterior over all weights

~

.

Subnetwork Selection

Goal: Find subnetwork whose posterior is closest to the full network posterior

min Wass| full posterior || subnet posterior |
= min Wass| p(Wly, X) || ¢(W) |
~ min Wass| N/ (W; WMAP,H_l) | AN (WS; W]\%AP,H;) H5(Wr — Whrap) |

Intractable, as this depends on all entries of the full network Hessian H x

* Assume that posterior is factorized for dependence only on diagonal entries. /
diag. assumption for subnetwork selection > diag. assumption for inference

N 4

-)
Wasserstein subnetwork selection

1) Estimate a factorized Gaussian posterior over all weights
2) Subnetwork = weights with largest marginal variances

.

Subnetwork Inference

Proposed Posterior Approximation:

W
p(Wly, X) ~ (W) =p(Wsly, X H5 /
WS H 5 — WS U {Wr}r
subnetwork
= N(Ws;Wiiup, H H 0(Wr =Wirap) probabilistic

Questions:

3. How do we select the subnetwork W g ?

Subnetwork Inference

Proposed Posterior Approximation:

A%
p(Wly, X) = q(W) = p(Wsly, X H5 /
WS H 5 — WS U {WT'}T'
subnetwork
~ NWg; W5 i p, H H 0(Wr =Warap) probabilistic

Questions:

3. How do we select the subnetwork W g ?
—> min. Wass. distance between subnetwork posterior & full posterior

Subnetwork Inference

Proposed Posterior Approximation:

A\%Y%
p(Wly, X) = q(W) = p(Wsly, X H5 /
WS H 5 — WS U {WT'}T
subnetwork
~N(Wg; WS, p, H H 0(Wr —Wizap) probabilistic
Questions:

4. How do we make predictions with the approximate posterior ¢(W) ?

Subnetwork Inference

Proposed Posterior Approximation:

A%
p(Wly, X) = q(W) = p(Wsly, X H5 /
WS H 5 — WS U {WT'}T
subnetwork
~ NWg; W5 i p, H H 0(Wr =Warap) probabilistic

Questions:

4. How do we make predictions with the approximate posterior ¢(W) ?
—> use all weights: integrate out subnetwork &

Making Predictions

Full Laplace Subnetwork Laplace

Predictive »(y*|x", D)
for Regression

Predictive p(y*|x*, D)
for Classification

Making Predictions

Full Laplace Subnetwork Laplace

Predictive »(y*|x", D)
for Regression

Predictive p(y*|x*, D)
for Classification

Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

* | * * 2
for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

Predictive Cov. Matrix N(x*) = Jx)TH1J(x)

Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

* | * * 2
for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

Predictive Cov. Matrix N(x*) = JxH)TH L T(x") Yo(xt) = Je(x*)THy ' Ts(x*)

Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

* | *) * 2
for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

Predictive Cov. Matrix N(x*) = Jx)TH1J(x) Y (x*) = Js(x*)THSTlJS(x*)

Making Predictions

Full Laplace Subnetwork Laplace

Predictive p(y*|x",D)

* | *) * 2
for Regression Ny f(x*,w), Xs(x")+0°1)

Predictive p(y*|x*, D)
for Classification

f(x*,w)
softmax (\/H_%diag(ZS(X*))

Predictive Cov. Matrix N(x*) = JxH)TH L T(x") Ye(x*) = Je(x*)T Hy ' Ts(x*)

Subnetwork Inference

Subnetwork Inference

0 MAP Estimation

N

0:7 Oxl

Subnetwork Inference

e Subnet Selection f?\

Subnetwork Inference

6 Bayes. Inference ?f

Subnetwork Inference

A
/BN
R

0:7

NS

Q Prediction (= ©

1D Regression

1D Regression

Model: 2 hidden layer, fully-connected NN
with a total of 2600 weights

1D Regression

Model: 2 hidden layer, fully-connected NN
with a total of 2600 weights

MAP (0)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

MAP (0)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) MAP (0)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) MAP (0)

Diag (2600)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) MAP (0)

Diag (2600) Final layer (50)

with a total of 2600 weights

Full Cov (2600)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive

Diag (2600)

Rand 50% (1300

)

uncertainty (Foong 2019)

MAP (0)

Final layer (50)

Full Cov (2600)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights

Diag (2600)

Rand 50% (1300

)

Rand 3% (78)

uncertainty (Foong 2019)

MAP (0)

Final layer (50)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) MAP (0)

Diag (2600) Rand 50% (1300) Rand 3% (78) Rand 1% (26) Final layer (50)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) Wass 50% (1300 MAP (0)

Diag (2600) Rand 50% (1300) Rand 3% (78) Rand 1% (26) Final layer (50)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights

Full Cov (2600)

Wass 50% (1300

Wass 3% (78)

Diag (2600)

Rand 50% (1300

)

Rand 3% (78)

uncertainty (Foong 2019)

Rand 1% (26)

MAP (0)

Final layer (50)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights

Full Cov (2600)

Wass 50% (1300

Wass 3% (78)

uncertainty (Foong 2019)

Wass 1% (26)

MAP (0)

Diag (2600)

Rand 50% (1300

)

Rand 3% (78)

Rand 1% (26)

Final layer (50)

1D Regression

Model: 2 hidden layer, fully-connected NN Goal: test ‘in-between’ predictive
with a total of 2600 weights uncertainty (Foong 2019)

Full Cov (2600) Wass 50% (1300 Wass 3% (78) Wass 1% (26) MAP (0)

Diag (2600) Rand 50% (1300) Rand 3% (78) Rand 1% (26) Final layer (50)

Expressive inference over a small subnetwork preserves more
predictive uncertainty than crude inference over the full network!

Interaction Between Network Size and
Subnetwork Size

We compare 4 models:

1. 50 hidden units, 1 hidden layer w;:100, h;:1
2. 100 hidden units, 1 hidden layer $ w;:50, h;:1
3. 50 hidden units, 2 hidden layer w;:50, h;:2
4. 100 hidden units, 2 hidden layer ¢ w;:100, /1;:2

LL

Interaction Between Network Size and
Subnetwork Size

We compare 4 models:

2
3.
4

1.

wine

—0.965 -

—0.970

—-0.975

—0.980 -

—0.985

—0.990 ¢

&8

—0.995 -

I I I I I
0 600 1200 3100 11200

posterior dim

wine-gap
—0.975 -

s
—0980 4

0

—0.985 ¢ ¢
—0.990

0
—0.995 ¢

I I I I I
0 600 1200 3100 11200

posterior dim

50 hidden units, 1 hidden layer
100 hidden units, 1 hidden layer
50 hidden units, 2 hidden layer
100 hidden units, 2 hidden layer

&3

0

kin8nm
¢
11 40 9 M !
1.0 -
09 -
0.8 ¢ &

I I I I I
0 450 900 295010900

posterior dim

w

i:lOO, hill

ZUZ'ZSO, hitl
ZUZ'ZSO, hl-:2

w;:100, h;:2
kin8nm-gap
e ¢ ¢

05
08
07 48 8

I I I I I
0 450 900 295010900

posterior dim

protein

—2.800 -

—2.825 -

—2.850 -

—2.875 -

—2.900 -

—2.925 -

—2.950 -

¢ ¢

o ¢ 9

X RN

I I I I I
0 500 1000 3000 11000

posterior dim

protein-gap

—-3.050 ¢

—3.075

—3.100

—3.125

—3.150

—3.175

0

Q0

I I I I I
0 500 1000 3000 11000

posterior dim

LL

Interaction Between Network Size and
Subnetwork Size

We compare 4 models:

2.

1.

50 hidden units, 1 hidden layer
100 hidden units, 1 hidden layer

&3

3. 50 hidden units, 2 hidden layer

4.

wine

—0.965 -

—0.970

—-0.975

—0.980 -

—0.985

—0.990

O
<><><>

3

—0.995 -

I I I I I
0 600 1200 3100 11200

posterior dim

wine-gap
—0.975 -

o
—0980 4

0

—0.985 ¢ ¢
—0.990

0
—0.995 ¢

I I I I I
0 600 1200 3100 11200

posterior dim

100 hidden units, 2 hidden layer

¢
kin8nm
e ¢ ¢ 9 0
10 -
09 -
08 48 %

I I I I I
0 450 900 295010900

posterior dim

w

Z’ZlOO, hiil

ZUZ'ISO, hi:].
ZUZ'ZSO, hi:2

w

2100, h;:2

kin8nm-gap

1.0 1

0.9 =

0.8

o ¢
o ¢ ¢

0.7 =

XX

I I I I I
0 450 900 295010900

posterior dim

protein

—2.800 -

—2.825 -

—2.850 -

—2.875 -

—2.900 -

—2.925 -

¢ ¢

o ¢ ¢

—2.950 -

3 R

I I I I I
0 500 1000 3000 11000

posterior dim

protein-gap

—-3.050 ¢

—3.075

—3.100

—3.125

—3.150

0

—3.175

Q0

I I I I I
0 500 1000 3000 11000

posterior dim

* Given the same amount of compute, larger models benefit more from subnetwork inference.

Image Class. under Distribution Shift

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights

* * Diagonal Laplace

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights

* * Diagonal Laplace
e MC Dropout (Gal 2016)

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)

subnet of just 42K (0.38%) weights

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Baselines:

Diagonal Laplace
MC Dropout (Gal 2016)

(Lakshminarayanan 2017)
SWAG (Maddox 2019)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

TL1TVvNuNNdQLQS2 7?2 2

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights MAP
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019)

(PRVEVEVENENENURES D B B ;&

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019)

Severity = 1

TLrv v/ v QS 22

0.0 - ---- MAP —--— Ensemble
—— Diag-Lap —— SWAG
254 Dropout —— Ours
—
— —50
—7.5
I I I I I I I I I I I I I
0 30 60 0 120 150 180

rotation (*)

Image Class. under Distribution Shift

LL

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

00 4 & —*~_ -~~~ MAP - Ensemble
e —-—-— Diag-Lap —— SWAG
—25 — N e Dropout —— Ours
. \
\
—50 - .\
' \
\."‘o -0—
7.5 - *.‘ _&5..——0
I I I I I I I I I I I I
0 60 0 120 150 180

rotation (*)

Diagonal Laplace
MC Dropout (Gal 2016)

(Lakshminarayanan 2017)

SWAG (Maddox 2019)

Corrupted CIFAR10 (Ovadia 2019)

Clean Severi ity = 1 S erity = 2 Severi ity =3 Severity = 4

Severi ity =5

2 : o
. s, " e

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019)

Severity = 1 ri

T v/ v W N S [S [R[] 2

0.0 -1 &= P

---- MAP —--— Ensemble
-\ . - Diag-l_ap —— SWAG
o5 - \ Dropout — Qurs
_ A
— —50 - \\
—7.5 - B T Lamat SR
11 1 T T T T T T T T 1
0 30 60 0 120 150 180

rotation (*)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR1O (Ovadla 201 9)

L1 vNNWdQDDD 7T 72 ,

00 4 o= -~~~ MAP —— Ensemble
Bt —-— Diag-Lap —— SWAG
_ [I I . N N R B R Dropout — Ours
25 %
— 2
— _50 -
5.0 \ ‘0.
—7.5 = Q""~._‘3:"’-‘-‘ ~~..a-—
1 1 1 1T 1T T T T T T T 1
0 30 60 0 120 150 180

rotation (*)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019

Clea Severit y=1 Severit

T v/ v W N S [S [R[] 2

LL

0.0 - = -~ MAP ——— Ensemble
—-— Diag-Lap —— SWAG
—25 - \ -------- Dropout —— Ours
—5.0 ﬁ\\ i
75 - L e T
J J J J J J J I I J J J J
0 30 60 0 120 150 180

rotation (*)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019

Clea Severit y=1 Severit

T v/ v W N S [S [R[] 2

LL

00 4 o= -~~~ MAP —— Ensemble
—— Diag-Lap —— SWAG
—25 - \ -------- Dropout —— Ours
: .
_5.0 = \\’: ..\.:.\.*.
—75 - — ..:.__.."3-;‘35;;# .'":_".'
| I I | I I I I I I I I I
0 30 60 0 120 150 180

rotation (*)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights MAP
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)
Rotated MNIST (Ovadia 2019) Corrupted CIFAR10 (Ovadia 2019)

Clea Severit y=1 Severit

(P VEVEVENENEISUSIS D B Ny’ [

LL

0.0 ~-—-- MAP —-— Ensemble
—-— Diag-Lap —— SWAG
—25 - N Dropout —— Ours
~5.0 - \”\?.'.\,k
o T T - e
~7.5 - LY S R
— T T T T T T T T T T T 1
0 30 60 %0 120 150 180

rotation (*)

Image Class. under Distribution Shift

Model: Baselines:
ResNet-18 with 11M weights
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019) Corrupted CIFAR1O (Ovadla 201 9)

Clean

LrLrvvNdISD S 27272 %

0.0 - ~--- MAP —--— Ensemble
—— Diag-Lap —— SWAG
25 — N S g Dropout —— Ours —1 -
-l
— _50 -+ \\\\\ —2 -
%\ ---- MAP —--= Ensemble
— - — "—t ——-— Diag-Lap —— SWAG
7.5 =8 31 ""'.“‘3 —3 o Dro?aoutp —— Ours
I I I | I I I I I I I T T T T | T
0 30 60 0 120 150 180 0 1 2 3 4 5

rotation (") corruption

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

* Diagonal Laplace
e MC Dropout (Gal 2016)

o (Lakshminarayanan 2017)

e SWAG (Maddox 2019)

Corrupted CIFAR1O (Ovadla 2019)

0.0 -~~~ MAP ——— Ensemble
—-—-— Diag-Lap —— SWAG "~~~~
—25 - N Dropout —— Ours —1 - *~~~~
-l &
— —50 ‘\\\‘\ - S
\t:\ ---= MAP ——- Ensemble = U= _
_75 - =Pas2 J-—t —-— Diag-lap —— SWAG -~
7.5 3 '--.-—3 34 Dropout —— Qurs Swo
| | | | | | | | T T T T T T
0 60 0 120 150 180 0 1 2 3 4 5

rotation (*)

corruption

Image Class. under Distribution Shift

LL

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

* Diagonal Laplace
e MC Dropout (Gal 2016)

o (Lakshminarayanan 2017)
e SWAG (Maddox 2019)

Corrupted CIFAR1O (Ovadla 2019)

0.0 - ---- MAP —--— Ensemble
—-— Diag-Lap —— SWAG e
55 S Dropout —— Ours —1 - hie S
.#i
.\
~5.0 \\\\ ~ -2 - TN
| S 3:1-—&‘ £ B D SR T
— - =P —--— Diaglap ——: ~ i~
7-5 N’ —3 -l Dro%outp — Ours \ﬁm
| | | | | | | | | | | | | | | | |
0 30 60 0 120 150 180 0 1 2 3 4 5

rotation (*)

corruption

Image Class. under Distribution Shift

LL

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

* Diagonal Laplace
e MC Dropout (Gal 2016)

o (Lakshminarayanan 2017)
e SWAG (Maddox 2019)

Corrupted CIFAR1O (Ovadla 2019)

0.0 ---- MAP —--— Ensemble
—-— Diag-Lap —— SWAG .‘4*....
_>5 S Dropout —— Ours —1 - T,
\sL-. -
~50 - ‘\\\\ -2 R T
) 3,14: $::d I AR, op| L e TR,
e =g —— Diaglap —— LT
7.5 gbL- 4L 34 Dropout —— Qurs It |
1 1 T 1T T T 1 I I 1 T T | I
0 30 60 0 120 150 180 0 1 2 3 5

rotation (*)

corruption

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

* Diagonal Laplace
e MC Dropout (Gal 2016)

o (Lakshminarayanan 2017)
e SWAG (Maddox 2019)

Corrupted CIFAR1O (Ovadla 2019)

0.0 - ---- MAP —--— Ensemble
—--— Diag-Lap —— SWAG E;;.:*- -
_>5 S Dropout —— Ours —1 - hie T L U
.\ﬁ.L'- .\n\
— et
\'., ~.~'§
— 50 - \‘\\\'\ —2 - SN, =
) 3,14: 33 12 DAk | = Sl R
—75 - =P —~— Diag-Lap —— SLET
7-5 N’ —3 -l Dro%outp — Ours \ﬁﬂ
1T T T T T 1 — 1 T 1 1 1 T]
0 30 60 0 120 150 180 0 1 2 3 4 5

rotation (*)

corruption

Image Class. under Distribution Shift

LL

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

0.0 -

---- MAP —--— Ensemble
. - Diag-l_ap —— SWAG
_25 _ R Dropout — Qurs
| %
—5.0 \”\.\s.\.\
\&L" B o T T oy O
—75 - = ‘\-‘_—3—;:{"‘:*3
11 T T T T T T T T T 1
0 30 60 0 120 150 180

rotation (*)

Diagonal Laplace
MC Dropout (Gal 2016)

(Lakshminarayanan 2017)
SWAG (Maddox 2019)

Corrupted CIFAR10 (Ovadia 2019)

Severity = 1

Cle

Severity =

ET.\~
-.~~.\
—17 et o
J '...§
t.:.'\.,:.\‘.
_2 - \Q‘ e S -
~=== MAP ——- gl'lvselgble Sl -
—-— Diag-Lap —— SWA e,
-3 Dropout —— Ours \'7:!
1 1 1 1 1 1
0 1 2 3 4 5

corruption

Image Class. under Distribution Shift

LL

Model: Baselines:
ResNet-18 with 11M weights MAP
* * Diagonal Laplace
e MC Dropout (Gal 2016)
Wasserstein subnetwork inference . (Lakshminarayanan 2017)
subnet of just 42K (0.38%) weights e SWAG (Maddox 2019)

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

0.0 -

---- MAP —--— Ensemble
. - Diag-l_ap —— SWAG
_25 _ R Dropout — Qurs
| N
—5.0 \.Q\o\
%L" B o T T oy O
—75 - a ‘\-‘_—3-;:{"’4*3
— T T T T T T T T T T T 1
0 30 60 0 120 150 180

rotation (*)

Corrupted CIFAR10 (Ovadia 2019)

Severity = 1

Cle

Severity =

« \
—=-= MAP —-- E\?Vselgble aliia. .
—— Diaglap ——: A .,
=3 Dropout —— Ours \ﬁﬂ
T T T 1 1 T
0 1 2 3 4 5

corruption

Image Class. under Distribution Shift

Model:
ResNet-18 with 11M weights

¥

Wasserstein subnetwork inference
subnet of just 42K (0.38%) weights

Rotated MNIST (Ovadia 2019)

T v/ v W N S [S [R[] 2

Baselines:

 MAP

* Diagonal Laplace

MC Dropout (Gal 2016)
(Lakshminarayanan 2017)

SWAG (Maddox 2019)

Corrupted CIFAR10 (

Ovadia 2019)
Clean __ Severity=1 _ _Severity =2 _sever |

verity = 4 Severi ty

=5

0.0 -——-~ MAP —— Ensemble
—-— Diag-Lap —— SWAG
254 QAL T Dropout —— Ours
-l \
— 50 - \’\?.'\. R T
STTY Ty PP S ---- MAP —--— Ensemble Ciina. e
o =y ey AE S5 S TNy oy ~— Diaglap —— SWAG T
75 eAEEEd || e - S iig
— T T T T T T T T T T T 1 I I I I I I
0 30 60 0 120 150 180 0 1 2 3 4 5
rotation (") corruption

* Subnet inference is more robust to

distribution shift than popular baselines!

Take-Home Message

Tak
e-H
ome Mes
sag
e

A

@& @\A
/:P

Take-Home Message

8
e f\\/\?
"

We propose a Bayesian deep learning method

Take-Home Message

%)P

We propose a Bayesian deep learning method
that does expressive inference

Take-Home Message

%)P

We propose a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,

Take-Home Message
@

%)P

We propose a Bayesian deep learning method
that does expressive inference
over a carefully chosen subnetwork
within a neural network,
and show that this performs better than
doing crude inference over the full network.

