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Introduction to PAC
Generalisation Bounds



Motivation

• Explaining generalisation in deep learning.
• Can prove that with high probability, (stochastic) neural networks

with millions of weights will generalise.

• Developing novel learning algorithms.
• E.g. recent work has suggested modifying the ELBO on

PAC-Bayesian grounds, to deal with misspecification.

• Relating Bayesian and frequentist learning.
• PAC-Bayes can provide a frequentist justification for Bayesian

inference, without assuming the model is correct.

Please ask questions!
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PAC Setup

• PAC (Probably Approximately Correct) framework is frequentist.

• Here we consider supervised learning.

• Consider classification with input space X and output space Y.

• E.g. x ∈ X is an image, and Y = {−1,+1} is the set of labels.

• Let D be some unknown data-generating distribution over X × Y.

• Define a hypothesis space as a set H of functions from X → Y.

In the PAC setting, we view the learning algorithm as choosing a
hypothesis/predictor h ∈ H.
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The True Risk

How shall we choose the hypothesis h ∈ H?

• Define a loss function ` : X × Y ×H → R.

• Define the generalisation risk/true risk as:

R(h) = E(x ,y)∼D [`((x , y), h)].

• We commonly consider the 0-1 loss:

`((x , y), h) := 1{h(x) 6= y},

where 1{·} is the indicator function. Then R(h) is just the error
probability.

• We want to choose h such that R(h) is minimised.

• However, we don’t know D, so we cannot compute R(h).
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The Empirical Risk

• We estimate the true risk by sampling a dataset

S = {(xn, yn)}Nn=1
i.i.d.∼ D.

• We use S to choose hS . (Sometimes suppress S).

• We then compute the empirical risk rS :

rS(hS) =
1

N

∑
(x ,y)∈S

`((x , y), hS).

PAC bounds upper bound true risk R(hS) in terms of the empirical risk.
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A Warning for Bayesians

In Bayesian thinking, unknown is synonymous with random, and known
is synonymous with deterministic.

• Not so in PAC (and PAC-Bayes)!

• The dataset S is known, but in the PAC setting it is a random
variable sampled from D.

• D is unknown. A Bayesian might place a prior over the parameters
of D, and update with Bayes’ rule.

• This is illegal in the PAC setting. D is unknown, but its
“form/parameters”, whatever they are, are deterministic.

Hence all randomness comes from sampling S :

• S , hS , rS(hS),R(hS) are all random variables through S .

• D is not random. R(h) is non-random if h is non-random (in
particular, independent of S).
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Worst Case Analysis

But if D is not known, and can’t be modelled probabilistically, how can
we say anything?

• Seek theorems that hold with high probability for any D.

• PAC bounds constitute a worst-case analysis.

• However, very weak assumptions! Typically just i.i.d. assumptions.

• No need to worry about priors or model mismatch!
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The Simplest PAC Bound — Validation

• Consider the case where h does not depend on the sample S .

• Arises naturally when h is learned using some training data (thought
of as non-random), but we want to bound its error using a fresh
validation set S .

Want to bound the difference between true and empirical risk.

R(h)− rS(h) = E(x ,y)∼D [`((x , y), h)]− 1

N

∑
(x ,y)∈S

`((x , y), h)

• Since h doesn’t depend on S , the RHS is an average of
i.i.d. random variables.

• The LHS is deterministic, and is just the mean of the RHS.

• Concentration inequalities bound deviations of this average.
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Hoeffding’s Inequality

Theorem 1 (Hoeffding).

Let Z1, . . . ,ZN be i.i.d. random variables bounded in [0, 1]. Then for all
ε > 0,

P

[∣∣∣∣∣ 1

N

N∑
n=1

Zn − E[Zn]

∣∣∣∣∣ > ε

]
≤ 2 exp(−2Nε2).

Probability of a deviation greater than ε decreases as ε and N increase.

By writing δ = 2 exp(−2Nε2), we get, with probability at least 1− δ,∣∣∣∣∣ 1

N

N∑
n=1

Zn − E[Zn]

∣∣∣∣∣ ≤
√

1

2N
log

2

δ
.



Hoeffding’s Inequality

Theorem 1 (Hoeffding).

Let Z1, . . . ,ZN be i.i.d. random variables bounded in [0, 1]. Then for all
ε > 0,

P

[∣∣∣∣∣ 1

N

N∑
n=1

Zn − E[Zn]

∣∣∣∣∣ > ε

]
≤ 2 exp(−2Nε2).

Probability of a deviation greater than ε decreases as ε and N increase.

By writing δ = 2 exp(−2Nε2), we get, with probability at least 1− δ,∣∣∣∣∣ 1

N

N∑
n=1

Zn − E[Zn]

∣∣∣∣∣ ≤
√

1

2N
log

2

δ
.



A PAC Validation Bound

If we let Zn = `((x , y), h), Hoeffding’s inequality immediately yields, with
probability at least 1− δ,

R(h) ≤ rS(h) +

√
1

2N
log

2

δ
.

• Think of
√

1
2N log 2

δ as a gap term.

• It shrinks with more data, or with higher failure probability δ.

• This is our first PAC generalisation bound!

• “Probably” → with probability 1− δ over dataset S ,

“Approximately” → with a gap term
√

1
2N log 2

δ .

But what if we want to choose h dependent on S?
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A Warning About Interchanging Order of Words

• The previous result holds for all h, with high probability.

• This is very different from saying with high probability, for all h!

Figure 1: From Bousquet et al. [2003]

• Our result says if you fix hypothesis g , then sample S , empirical risk
(Rn(g)) will be close to true risk (R(g)).
• Switching order implies that with high probability, the curves Rn

and R are close for all g simultaneously!
• Latter statement more useful: allows us to choose the hypothesis

depending on S .
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The Union Bound

We seek a statement of the form “with high probability, for all h . . .”

• Can use the union bound for a finite hypothesis space H.

• P(A1 ∪ . . . ∪ AN) ≤
∑N

n=1 P(An).

• We upper bound the probability of the bound failing for any h ∈ H:

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
= P

[⋃
h∈H

{
S : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

}]

≤
∑
h∈H

P
[
R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.



The Union Bound

We seek a statement of the form “with high probability, for all h . . .”

• Can use the union bound for a finite hypothesis space H.

• P(A1 ∪ . . . ∪ AN) ≤
∑N

n=1 P(An).

• We upper bound the probability of the bound failing for any h ∈ H:

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
= P

[⋃
h∈H

{
S : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

}]

≤
∑
h∈H

P
[
R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.



The Union Bound

We seek a statement of the form “with high probability, for all h . . .”

• Can use the union bound for a finite hypothesis space H.

• P(A1 ∪ . . . ∪ AN) ≤
∑N

n=1 P(An).

• We upper bound the probability of the bound failing for any h ∈ H:

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
= P

[⋃
h∈H

{
S : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

}]

≤
∑
h∈H

P
[
R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.



The Union Bound

We seek a statement of the form “with high probability, for all h . . .”

• Can use the union bound for a finite hypothesis space H.

• P(A1 ∪ . . . ∪ AN) ≤
∑N

n=1 P(An).

• We upper bound the probability of the bound failing for any h ∈ H:

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
= P

[⋃
h∈H

{
S : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

}]

≤
∑
h∈H

P
[
R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.



The Union Bound

We seek a statement of the form “with high probability, for all h . . .”

• Can use the union bound for a finite hypothesis space H.

• P(A1 ∪ . . . ∪ AN) ≤
∑N

n=1 P(An).

• We upper bound the probability of the bound failing for any h ∈ H:

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
= P

[⋃
h∈H

{
S : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

}]

≤
∑
h∈H

P
[
R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.



PAC Bound for Finite Hypothesis Spaces

P
[
∃h ∈ H : R(h) > rS(h) +

√
(2N)−1 log(2/δ)

]
≤ |H|δ.

If we set δ′ := |H|δ, we have that with probability at least 1− δ′, for all
h ∈ H simultaneously,

R(h) ≤ rS(h) +

√
1

2N
log

2|H|
δ′

= rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
• Bound holds even if we pick h ∈ H dependent on S .
• Identical to validation bound except for log |H|, which is a crude

measure of “complexity”.
• Can we do something more interesting than union bound?
• Yes — if we use randomised hypotheses, we can use PAC-Bayes!
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PAC-Bayes



PAC-Bayes setup

• Define a prior P on hypotheses that doesn’t depend on the data, S .

• Define a posterior Q(S) = Q on hypotheses that can depend on
data, S .

• Define RQ = Eh∼Q [R(h)] and rS ,Q = Eh∼Q [rS(h)|S ].

• PAC-Bayes gives bounds of the form RQ

1−δ
≤ rS ,Q + f (Q,P,N, δ),

for all Q where f depends on how different Q and P are, and
usually goes to 0 as N →∞.
• Warning: The assumptions in PAC-Bayes are different than in

Bayes.
• Assumes data is i.i.d. from (unknown) distribution D,
• No assumption that P is related to a generating process/prior beliefs

about the data.
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Mcallester’s PAC-Bayes bound

Theorem 2 (Mcallester’s Theorem, McAllester, 1999,
Maurer Variant).

For any ` ∈ {0, 1}, D,H and P a probability measure supported on H,
for N ≥ 8,

RQ

1−δ
≤ rS,Q +

√
DKL [Q||P] + log

√
N + log 2

δ

2N
(1)

for all Q probability measures supported on H.

• This holds for all Q simultaneously. The RHS can be minimized
with respect to Q to find the posterior!

• If ` is the log-likelihood, minimizing this looks a lot like variational
inference.

• Note if |H| <∞, P is uniform and Q is a point mass, then
DKL [Q||P] = log |H|, in which case this looks a lot like the union
bound.
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Change of Measure

• Q = Q(S) depends on S in a perhaps complicated way.

• A key step in the proof of PAC-Bayes bounds is converting an
expectation under Q to an expectation under P.
• Suppose P and Q have densities (with respect to λ) p and q.

Lemma 3 (Change of Measure).∫
φ(h)q(h)dλ−DKL [Q||P] = log

∫
eφ(h)p(h)dλ−DKL

[
Q||P̂

]
(2)

≤ log

∫
eφ(h)p(h)dλ, (3)

where P̂ is the measure with density p̂(h) = eφ(h)p(h)∫
eφ(h′)p(h′)dλ

.

• φ→ log-likelihood, P → Bayesian prior, Q → variational posterior:

EQ [log likelihood]−DKL [Q||P] ≤ log marginal likelihood.

• This is just the variational ‘ELBO’!
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Proof of Change of Measure

We expand out the term DKL

[
Q||P̂

]
:∫

log
q(h)

p̂(h)
q(h)dλ =

∫
log

q(h)

p(h)

p(h)

p̂(h)
q(h)dλ (4)

=

∫
log

q(h)

p(h)
q(h)dλ︸ ︷︷ ︸

DKL[Q||P]

− log
p̂(h)

p(h)
q(h)dλ. (5)

The second term on the RHS is,∫
log

p̂(h)

p(h)
q(h)dλ =

∫
φ(h)q(h)dλ− log

∫
eφ(h)p(h)dλ. �
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Some Useful Inequalities

Theorem 4 (Markov’s inequality).

Let X be a non-negative random variable. Then for any a > 0,
P(X > aE[X ]) < 1/a.

Theorem 5 (Jensen’s inequality).

Let f be a convex function, and suppose E[X ],E[f (X )] are finite. Then

f (E[X ]) ≤ E[f (X )].
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Proof of Mcallester’s Bound

• Define ∆(RQ , rS ,Q) = |RQ − rS,Q |2, our goal will be to upper bound
∆ with high probability.

• As |RQ − rS ,Q |2 is convex, by Jensen’s inequality,

∆(RQ , rS,Q) ≤ Eh∼Q [|R(h)− rS(h)|2].

• We would like to switch from an expectation that depends on Q
(and hence S) to one that does not.
• Recall,
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Proof of Mcallester’s Bound (continued)

• It remains to upper bound ES

[
Eh∼P [e2N|R(h)−rS (h)|2 ]

]
.

• Interchanging order of integration,

E
S

[
E

h∼P
[e2N|R(h)−rS (h)|2 ]

]
= E

h∼P
E
S

[e2N|R(h)−rS (h)|2 ]].

• NrS(h)|h is a binomial random variable, with N “coin tosses” each
with probability R(h) of heads.
• Hence,

E
h∼P

E[e2N|R(h)−rS (h)|2 ]]

= E
h∼P

 N∑
k=0

(
N

k

)
R(h)k(1− R(h))N−k︸ ︷︷ ︸

Binomial PMF

e2N|R(h)− k
N
|2

 (6)

≤ sup
m∈[0,1]

N∑
k=0

(
N

k

)
mk(1−m)N−ke2N|m− k

N
|2 . (7)
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Finishing the Proof

It can be shown [Maurer, 2004] that,

sup
m∈[0,1]

N∑
k=0

(
N

k

)
mk(1−m)N−keN|m−

k
N
|2 ≤ 2

√
N.

Putting this altogether,

|RQ − rs,Q |2
1−δ
≤
DKL [Q||P] + log 2

√
N
δ

2N
, (8)

After rearranging gives,

RQ

1−δ
≤ rs,Q +

√
DKL [Q||P] + log 2

√
N
δ

2N
. � (9)
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Other PAC-Bayes bounds

• There are a variety of other PAC-Bayes bounds with similar proofs.
(e.g. Catoni [2003], Seeger [2002], Bégin et al. [2016]).

• There are also various generalizations e.g. that allow the prior to
depend in certain ways on the data S (e.g. Ambroladze et al.
[2007]) or that allow for non-i.i.d. data (e.g. Ralaivola et al. [2009]).
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Applications to Neural Networks



Does understanding deep learning require rethink-
ing generalization?

Zhang et al. [2017] show that NNs trained with SGD find solutions h
that:

1 Are able to obtain ≈ 0 training error rs(h) while still generalizing
(low R(h)).

2 Are able to achieve ≈ 0 training error rs(h) when the training labels
are randomised. (Of course here R(h) is large.)

NNs can overfit but in practise don’t: why?
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Applying traditional bounds to neural networks

Consider a NN with 2 hidden layers, 100 hidden units and no biases:
10200 parameters.

Naive hypothesis class: every possible setting of

the float-32 weights |H| = 232×60.

• Finite hypothesis space bound:

R(h) ≤ rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
With δ = 0.2, we would need N > 113, 122 for rhs to be < 1.
For ResNet50, N > 255, 078, 163.

• Analogously, for PAC-Bayes choosing P(h) = 1
|H| ∀h is problematic.

Bounds are vacuous: for empirically well-performing models on
standard datasets, the generalisation error is bounded by a value greater
than 1.



Applying traditional bounds to neural networks

Consider a NN with 2 hidden layers, 100 hidden units and no biases:
10200 parameters. Naive hypothesis class: every possible setting of

the float-32 weights |H| = 232×60.

• Finite hypothesis space bound:

R(h) ≤ rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
With δ = 0.2, we would need N > 113, 122 for rhs to be < 1.
For ResNet50, N > 255, 078, 163.

• Analogously, for PAC-Bayes choosing P(h) = 1
|H| ∀h is problematic.

Bounds are vacuous: for empirically well-performing models on
standard datasets, the generalisation error is bounded by a value greater
than 1.



Applying traditional bounds to neural networks

Consider a NN with 2 hidden layers, 100 hidden units and no biases:
10200 parameters. Naive hypothesis class: every possible setting of

the float-32 weights |H| = 232×60.

• Finite hypothesis space bound:

R(h) ≤ rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
With δ = 0.2, we would need N > 113, 122 for rhs to be < 1.
For ResNet50, N > 255, 078, 163.

• Analogously, for PAC-Bayes choosing P(h) = 1
|H| ∀h is problematic.

Bounds are vacuous: for empirically well-performing models on
standard datasets, the generalisation error is bounded by a value greater
than 1.



Applying traditional bounds to neural networks

Consider a NN with 2 hidden layers, 100 hidden units and no biases:
10200 parameters. Naive hypothesis class: every possible setting of

the float-32 weights |H| = 232×60.

• Finite hypothesis space bound:

R(h) ≤ rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
With δ = 0.2, we would need N > 113, 122 for rhs to be < 1.
For ResNet50, N > 255, 078, 163.

• Analogously, for PAC-Bayes choosing P(h) = 1
|H| ∀h is problematic.

Bounds are vacuous: for empirically well-performing models on
standard datasets, the generalisation error is bounded by a value greater
than 1.



Applying traditional bounds to neural networks

Consider a NN with 2 hidden layers, 100 hidden units and no biases:
10200 parameters. Naive hypothesis class: every possible setting of

the float-32 weights |H| = 232×60.

• Finite hypothesis space bound:

R(h) ≤ rS(h) +

√
1

2N

(
log |H|+ log

2

δ′

)
With δ = 0.2, we would need N > 113, 122 for rhs to be < 1.
For ResNet50, N > 255, 078, 163.

• Analogously, for PAC-Bayes choosing P(h) = 1
|H| ∀h is problematic.

Bounds are vacuous: for empirically well-performing models on
standard datasets, the generalisation error is bounded by a value greater
than 1.



Can we do better?

Observations:

• Neural networks are relatively insensitive to noise in the weights: we
can quantise the weights with negligible loss in precision
[Krishnamoorthi, 2018].

• We can prune (set to 0) a large proportion of NN weights with
negligible loss in precision [Blalock et al., 2020].

Hypothesis: the complexity of functions found by fitting NN models is
much lower than the number of network parameters would suggest.
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Nonvacous bounds for deep (stochastic) NN

Fix δ > 0 and P on H. Collect dataset s ∼ D. Idea: Optimise Q with

rS,Q +

√
DKL [Q||P] + log 2

√
N
δ

2N
.

Computational considerations:

• rS ,Q = E[ 1
N

∑
(x ,y)∈S 1{h(x) 6= y}] is not differentiable! Use convex

surrogate upper bound:

rS,Q ≤ ¯rS ,Q = Eh∼Q [
1

N
√

2

∑
(x ,y)∈S

log(1 + exp(−h(x)y))]

• Choose Q to be a multivariate diagonal Gaussian over network
weights w : N (w ;µ, σI )

• Choose P = N (w ; 0, λI ). λ is chosen from a predefined set using a
union bound.
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Nonvacous bounds for deep (stochastic) neural net-
works (continued)

Algorithm:

1 Fit regular NN using SGD until convergence

2 Initialize µ at the local optima of the loss w∗. Initialize σ at |w∗|.
3 Optimize bound until convergence

¯rS,Q +

√
DKL [Q||P] + log 2

√
N
δ

2N
.

4 Estimate bound using original rS ,Q loss and samples from Q.

Intuition:

• Local optima in flat regions have a smaller description length

• This approach is very similar to Bayes by Backprop: we are
approximately optimising a lower bound on the marginal likelihood.
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• Bounds are less than 1 when models perform well
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Scaling to Imagenet using NN compression

Observation:

- The KL divergence DKL [Q||P] can be seen as the expected number of
bits needed to encode a message sampled from Q using a coding scheme
optimal for P.

Zhou et al. [2019] leverage this interpretation to derive bounds for large
networks after pruning and quantization.

On Imagenet, they obtain a bound of 96.5% while the validation error is
35%. (Non-vacuous!)
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Relating PAC-Bayes and Bayesian inference

• The expected minus log likelihood associated with some posterior Q:

CEQ = E(x ,y)∼D [− logEh∼Q [p(y |x , h)]

• Losses considered before where not log-loss functions. Lets define:

RQ = Eh∼Q [E(x ,y)∼D [− log p(y |x , h)]]

rS ,Q = Eh∼Q [
1

N

∑
(x ,y)∈S

− log p(y |x , h)]

Using Jensen’s we can see:

E(x ,y)∼D [− logEh∼Q [p(y |x , h)]︸ ︷︷ ︸
CEQ

≤ Eh∼Q [E(x ,y)∼D [− log p(y |x , h)]]︸ ︷︷ ︸
RQ
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Relating PAC-Bayes and Bayesian inference (Cont.)

A PAC-Bayes bound using our new loss functions:

CEQ ≤ RQ ≤ rS,Q +
DKL [Q||P]− log δ + ψP,D(c,N)

cN

Here δ and ψP,D(c ,N) = logEh∼P, (x ,y)∼D [exp(cN(Rh − rh,S))], const.

wrt. Q! If c = 1, this reduces to the ELBO.

This bound is miminised when Q matches the Bayesian posterior.

Minimising the above bound seems like it could be a good idea. Does
the optima of RQ also minimise CEQ?
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Model Misspecification

We will say that our model is correctly specified if the true data
generating progress is contained within our hypothesis space H:

∃ h ∈ H s.t. p(y |x , h) = D(y |x)

Otherwise we are learning under model misspecification.
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The Bayesian posterior is suboptimal under mis-
specification

Recall:

E(x ,y)∼D [− logEh∼Q [p(y |x , h)]︸ ︷︷ ︸
CEQ

≤ Eh∼Q [E(x ,y)∼D [− log p(y |x , h)]]︸ ︷︷ ︸
RQ

The distribution that minimises RQ is Q∗ = δ(h− hML): a point mass at
the Maximum Likelihood solution.

This will only be a minimiser of CEQ if:

E(x ,y)∼D [− log[p(y |x , hML) ≤ E(x ,y)∼D [− logEh∼Q [p(y |x , h)]

for all Q. In other words: the single hypothesis hML is better than any
model combination.
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The Bayesian posterior is suboptimal under mis-
specification (Continued)

δ(h − hML) a minimiser of CEQ if:

E(x ,y)∼D [− log[p(y |x , hML) ≤ E(x ,y)∼D [− logEh∼Q [p(y |x , h)]

for all Q.In other words: the single hypothesis hML is better than any
model combination.

Masegosa [2019] shows this only happens under perfect model
specification. Here, the distribution induced by our model matches the
data generating distribution:

DKL

[
Dy |x ||p(y |x , hML)

]
= 0

H(Dy |x) = CEhML
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Second order PAC-Bayes bounds

Recall:

E(x ,y)∼D [− logEh∼Q [p(y |x , h)]︸ ︷︷ ︸
CEQ

≤ Eh∼Q [E(x ,y)∼D [− log p(y |x , h)]]︸ ︷︷ ︸
RQ

We can sharpen our previous bound using a second order Jensen bound:

CEQ ≤ RQ − VQ ≤ RQ

where VQ is a variance encouraging term.

VQ = E(x ,y)∼D [
1

α(x , y)
Eh∼Q [

(
p(y |x , h)− Eh′∼Qp(y |x , h′)

)2
]]

VQ takes positive values for posteriors different than a delta. It reduces
to 0 otherwise (perfect model specification).
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We can add this new term to our PAC-Bayes bound:

CEQ ≤ RQ − VQ ≤ rS,Q − VQ +
DKL [Q||P]− log δ + ψP,D(c ,N)

cN



Second order PAC-Bayes: Misspecified noise model

The new variance term is able to increase disagreement among
hypothesis, increasing predictive variance.
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