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Self Supervised Learning (SSL)

Unsupervised Learning: 


Learning to Model the Observed Data


Self Supervised Learning: 


Learning by Predicting Proxy Targets 
Extracted From Unlabelled Data

[C. Bishop]

[Larsson et. al.] 




But Why Self Supervised Learning?

[Y. LeCun]



But Why Self Supervised Learning?

[Y. LeCun]

[D. MacKay]



In Other Words:

[Y. LeCun]



Talk Layout
1. Examples of Self Supervised Learning (SSL) Approaches


- Information Theoretic Interpretation


2. Mutual Information (MI) Motivated SSL approaches 


• Deep InfoMax


• Contrastive Predictive Coding


3. Is MI the real reason behind the success of SSL?


4. Generative Models for Representation Learning 

5. Self Supervised Learning for Identifiability in Non-Linear ICA



Typical SSL Approaches:

Encoder

Critic 

Input x

Representation z

SSL

• Predict Future From Past


• Predict Adjacent Sections in Structured Data


• Predict Occluded Area from Non-Occluded One


• Undo Data-Augmentation Transformations 

[Noroozi et. al.] 




Typical SSL Approaches:

• Predict Future From Past


• Predict Adjacent Sections in Structured Data


• Predict Occluded Area from Non-Occluded One


• Undo Data-Augmentation Transformations 

Encoder

Classifier Critic 

[Noroozi et. al.] 


Input x

Representation z

z0

z1

SSLDownstream Task

Obtain gains in downstream tasks (usually classification) 



Predicting Rotations

CNNs are not rotation invariant. 

Will need to learn part-whole relationships.

Encoder

Classifier 

Input x

Representation z

Rotation? {0, 90, 180, 270}
[Gidaris et. al.]

Supervised Attention

Self-Supervised Attention



Multimodal SSL: Audio + Video

Encoder v

Classifier 

Video x_v

z_v

Audio x_a

Encoder v

z_a

a-v Correspondence?: {Y, N}

[Arandjelovic et. al.] 
Separate  from p(a, v) p(a)p(v)



Word Embeddings 

Encoder

NCE Critic 

Input x(t)

Embedding z

Predict among negative samples: 
 {x(t−2), x(t−1), x(t+1), x(t+2)}

[Mikolov et. al.]

Unsupervised Analogical Reasoning

.
.

.

.
.

.

.
.

.
.

Skip Gram Model: Separating  from p(x(t), x(t+k)) p(x(t))p(x(t+k))



Typical SSL Approaches:
• Predict Future From Past


• Predict Adjacent Sections in Structured Data


• Predict Occluded Area from Non-Occluded One


• Undo Data-Augmentation Transformations 

Maximise Mutual Information Between Inputs and 
Representations?

I(x, z) = Ep(x,z)[log
p(x, z)

p(x)p(z)
]
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But What is Mutual Information?

• Symmetric, Bounded: 


• Invariant to Reparametrisations!

0 ≤ I(x, y) = I(y, x) ≤ min(H(x), H(y))

I(x, z) = KL(p(x, z) | |p(x)p(z)) = Ep(x,z)[log
p(x, z)

p(x)p(z)
]

I(x, z) = H(x) − H(x |z)

[Dinh et. al.]

f −1( ⋅ )

z x

Here: I(x, z) = H(x) = H(z)



But What is Mutual Information?

• Symmetric, Bounded: 


• Invariant to Reparametrisations!

0 ≤ I(x, y) = I(y, x) ≤ min(H(x), H(y))

ISSUE: No closed form for distributions. Only have samples!

I(x, z) = KL(p(x, z) | |p(x)p(z)) = Ep(x,z)[log
p(x, z)

p(x)p(z)
]

I(x, z) = H(x) − H(x |z)

[Dinh et. al.]

f −1( ⋅ )

z x

Here: I(x, z) = H(x) = H(z)



Density Ratio Estimation
I(x, z) = KL(p(x, z) | |p(x)p(z)) = Ep(x,z)[log

p(x, z)
p(x)p(z)

]



Density Ratio Estimation
• Lets write a = (x, z); p(a |b = 1) = p(x)p(z); p(a |b = 0) = p(x, z)
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Density Ratio Estimation
• Lets write a = (x, z); p(a |b = 1) = p(x)p(z); p(a |b = 0) = p(x, z)

r(a) =
p(a |b = 0)
p(a |b = 1)

=
p(b = 0 |a)p(a)p(b = 1)
p(b = 1 |a)p(a)p(b = 0)

=
p(b = 0 |a)
p(b = 1 |a)

=
p(b = 0 |a)

1 − p(b = 0 |a)



Density Ratio Estimation
• Lets write a = (x, z); p(a |b = 1) = p(x)p(z); p(a |b = 0) = p(x, z)

We often model conditional probabilities with parametric functions:

fNN(a) = p(b = 0 |a)

r(a) =
p(a |b = 0)
p(a |b = 1)

=
p(b = 0 |a)p(a)p(b = 1)
p(b = 1 |a)p(a)p(b = 0)

=
p(b = 0 |a)
p(b = 1 |a)

=
p(b = 0 |a)

1 − p(b = 0 |a)



Density Ratio Estimation
• Lets write a = (x, z); p(a |b = 1) = p(x)p(z); p(a |b = 0) = p(x, z)

fNN(a) = log r(a) = log
p(b = 0 |a)

1 − p(b = 0 |a)
= log(

p(x, z)
p(x)p(z)

)

We can learn a parametric function 
that estimates log density ratios from samples!  

r(a) =
p(a |b = 0)
p(a |b = 1)

=
p(b = 0 |a)p(a)p(b = 1)
p(b = 1 |a)p(a)p(b = 0)

=
p(b = 0 |a)
p(b = 1 |a)

=
p(b = 0 |a)

1 − p(b = 0 |a)



Representation Learning through Maximising I(x, z)

Encoder f(x)

Critic T(x,z)

x

z

Tθ(x, z) ≈ log
p(x, z)

p(x)p(z)

1. Sample from joint distribution:

     as     


2. Negative sample from factorised distribution:

     as     


3. Estimate  with 


4.Optimise 


(x, z) ∼ p(x, z) x ∼ p𝒟(x); z = fϕ(x)

(x, z) ∼ p(x)p(z) x, x′ ∼ p𝒟(x); z = fϕ(x′ )

I(x, z) Tθ(x, z)

arg maxθ,ϕ I(x, z)

Encoder 
f(x)

Critic 
T(x,z)

Encoder 
f(x)

Critic 
T(x,z)

MI MaximisationGANs *



[Hjelm et. al.]

Deep InfoMax
Global Objective Local Objective



Deep InfoMax (DIM)

[Hjelm et. al.]

Global 
Encoder

MLP Critic

• Max MI between Local and Global Representations 

• Critic is an MLP:

Local 
Encoder

zlocal

zglobal

x

MI Max

*

Linear SVM 
 Classification Results:



Contrastive Predictive Coding

[van den Oord et. al.]Audio-Video matching and Word2Vec fit within this framework!  

• Max MI between representations of spatially/temporally similar inputs 

•   with (AR NN + Bilinear) Critic  max I(z(t), z(t+k)) T(z(1...k), z(k+j)) = gAR(z(1...k))⊺W( j)z(k+j)

Audio Inputs Image Inputs



Better Contrastive Predictive Coding
• Large Batch Sizes


• Heavy Patch Augmentation


• Predict in every direction (not just forward)


• Larger Capacity NNs than when using labels


• Layer Norm (Not Batch Norm)

[He ́naff et. al.]

ImageNet

Text Document Classification



A Unifying Framework for Contrastive Learning

[Chen et. al.]



A Unifying Framework for Contrastive Learning

[Chen et. al.]

• Use ~InfoNCE to max MI between augmented inputs
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A Unifying Framework for Contrastive Learning

• Random Crop + Color Distortion Augmentation

• Big Batches, Big Computers
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• Use ~InfoNCE to max MI between augmented inputs



A Unifying Framework for Contrastive Learning

• Random Crop + Color Distortion Augmentation

• Big Batches, Big Computers

Downstream Linear Classification

[Chen et. al.]

• Use ~InfoNCE to max MI between augmented inputs



Mutual Information Neural Estimation (Deep InfoMax)
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Mutual Information Neural Estimation (Deep InfoMax)

I(x, z) ≥ max
θ

Ep(x,z)[Tθ] − log(Ep(x)p(z)[eTθ])

I(x, z) = Ep(x,z) [log
p(x |z)q(x |z)
p(x)q(x |z) ] = Ep(x,z) [log

q(x |z)
p(x) ] + Ep(z)[KL(p(x |z) | |q(x |z)]

Bound tight if    T = log
p(x, z)

p(x)p(z)

I(x, z) ≥ H(x) + Ep(x,z)[log q(x |z)]

q(x |z) =
p(x)

Ep(x)[eT(x,z)]
eT(x,z)We choose 



InfoNCE (Contrastive Predictive Coding)

[van den Oord et. al.]



InfoNCE (Contrastive Predictive Coding)

Similar to MINE, but: 
We draw an additional K-1 samples from x to a normalisation  constant:   

  Ep(x)[eT] ≈ m(z |x1 . . . xk) =
1
K

K

∑
i=1

eT(xi,z)

[van den Oord et. al.]



InfoNCE (Contrastive Predictive Coding)

Similar to MINE, but: 
We draw an additional K-1 samples from x to a normalisation  constant:   

  Ep(x)[eT] ≈ m(z |x1 . . . xk) =
1
K

K

∑
i=1

eT(xi,z)

I(x, z) ≥ max
θ

Ep(z|x1)p(x1...xK)[log
eTθ(x1,z)

∑K
j=1 eTθ(xj,z)

] := INCE

[van den Oord et. al.]

softmax cross-entropy



InfoNCE (Contrastive Predictive Coding)

Similar to MINE, but: 
We draw an additional K-1 samples from x to a normalisation  constant:   

  Ep(x)[eT] ≈ m(z |x1 . . . xk) =
1
K

K

∑
i=1

eT(xi,z)

I(x, z) ≥ max
θ

Ep(z|x1)p(x1...xK)[log
eTθ(x1,z)

∑K
j=1 eTθ(xj,z)

] := INCE

Note that:      
 Larger K (batch sizes) will yield less biased estimates

I(x, z) ≥ INCE + log K

[van den Oord et. al.]

softmax cross-entropy



Comparing MI estimators
MINE-f

MINE-f

log(64)

[Poole et. al.]

z = (Wx)3; x ∼ 𝒩(0,1)

Correlated Gaussian



Which One Should I Use?

Not an estimator

-JSD

Bias

Variance

-InfoNCE

-MINE-f

-MINE

Batch-Size: N 

- JSD 
- MINE 
- MINE-f

2N Critic Evaluations

- InfoNCE

N^2 Critic Evaluations

* If possible use InfoNCE with large batch size



Is MI Maximisation Really the Solution?

• More flexible critics can make for worse representations

• During training encoders become less invertible

Bilinear: 

Separable: 

T(z, x) = z⊺Wx
T(z, x) = ϕ(z⊺)ϕ(x)

[Tschannen et. al.]



Is MI Maximisation Really the Solution?

•A bijection can be applied to a useful representation making it not useful, maintaining 


•Utility of representation is a function of "decodable information", not MI


•This depends on inductive biases from:

• MI estimator

• Critic Function + Encoder Function

• Objects between which MI is maximised

I(x, z)
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A Generative Modelling 
Perspective



Latent Variable Generative Models 
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θ



Latent Variable Generative Models 

Goal: θ* = arg max
θ∈Θ

log pθ (D)
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Latent Variable Generative Models 

Goal: θ* = arg max
θ∈Θ

log pθ (D)

s

x

θ

pθ(s) = 𝒩(s; 0,I)

pθ(x |s) = 𝒩 (x; Ws + μ, σ2I)

Probabilistic PCA



Latent Variable Generative Models 

Goal: θ* = arg max
θ∈Θ

log pθ (D)

s

x

θ

pθ(s) = 𝒩(s; 0,I)

pθ(x |s) = 𝒩 (x; Ws + μ, Σ)

Factor Analysis



Latent Variable Generative Models 

Goal: θ* = arg max
θ∈Θ

log pθ (D)

s

x

θ

pθ(s) = 𝒩(s; 0,I)

pθ(x |s) = 𝒩 (x; fμ
nn(s), fσ2

nn(s))

VAE
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Identifiability

Identifiability: the “true” parameters will be recovered given infinite observations

pθ(x) = pθ′ 
(x) ⟹ θ = θ′ 

I. Khemakhem, et al. 2019

For generative models: 



Identifiability

Identifiability: the “true” parameters will be recovered given infinite observations

pθ(x) = pθ′ 
(x) ⟹ θ = θ′ 

I. Khemakhem, et al. 2019

For generative models: 

Identifiable models provide: 
A principled approach to representation learning (as opposed to 
“just” generative modelling). 
Links to other unsupervised desiderata (e.g., “disentanglement”) 



PCA Non-Identifiability



PCA Non-Identifiability

PCA / Factor Analysis:



PCA Non-Identifiability

Scaling:  WS =
α
α

WS = (α−1W)(αS)

PCA / Factor Analysis:



PCA Non-Identifiability

Scaling:  WS =
α
α

WS = (α−1W)(αS)

Rotation:  WS = WRR−1S = W′ S′ 

PCA / Factor Analysis:



VAE Non-identifiability 

F. Locatello et al. 2019.



VAE Non-identifiability 

Theorem. Let , then there 

exists an infinite family of bijections of the 

form   such that 

   

for some alternative generative model with 

parameters .

p(s) = ∏pd(sd)

f : 𝒮 → 𝒮

∫ pθ(x |s)p(s)ds = ∫ pθ′ 
(x | f(s))p( f(s))ds

θ′ 

F. Locatello et al. 2019.



VAE Non-identifiability 

pθ(x)

Theorem. Let , then there 

exists an infinite family of bijections of the 

form   such that 

   

for some alternative generative model with 

parameters .

p(s) = ∏pd(sd)

f : 𝒮 → 𝒮

∫ pθ(x |s)p(s)ds = ∫ pθ′ 
(x | f(s))p( f(s))ds

θ′ 

F. Locatello et al. 2019.



VAE Non-identifiability 

pθ(x) ≈ pθ*(x)

Theorem. Let , then there 

exists an infinite family of bijections of the 

form   such that 

   

for some alternative generative model with 

parameters .

p(s) = ∏pd(sd)

f : 𝒮 → 𝒮

∫ pθ(x |s)p(s)ds = ∫ pθ′ 
(x | f(s))p( f(s))ds

θ′ 

F. Locatello et al. 2019.



VAE Non-identifiability 

pθ(x)

pθ(s, x)

≈ pθ*(x)

Theorem. Let , then there 

exists an infinite family of bijections of the 

form   such that 

   

for some alternative generative model with 

parameters .

p(s) = ∏pd(sd)

f : 𝒮 → 𝒮

∫ pθ(x |s)p(s)ds = ∫ pθ′ 
(x | f(s))p( f(s))ds

θ′ 

F. Locatello et al. 2019.



VAE Non-identifiability 

pθ(x)

pθ(s, x)

≈ pθ*(x)

≈ pθ*(s, x)

Theorem. Let , then there 

exists an infinite family of bijections of the 

form   such that 

   

for some alternative generative model with 

parameters .

p(s) = ∏pd(sd)

f : 𝒮 → 𝒮

∫ pθ(x |s)p(s)ds = ∫ pθ′ 
(x | f(s))p( f(s))ds

θ′ 

F. Locatello et al. 2019.
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J. Shlens. 2014
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Linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)
s

x

θ



Linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = As; A ∈ ℝd×d

s

x

θ



Linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = As; A ∈ ℝd×d

Goal: recover A−1 ⟹ s = A−1x

s

x

θ



Maximum Likelihood Solution

D. Mackay. 2003.
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Maximum Likelihood Solution

ai = ∑
j

WijxjW = A−1;
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Maximum Likelihood Solution

ai = ∑
j

WijxjW = A−1; ϕ(ai) =
d

dai
log pi(ai)

D. Mackay. 2003.



Maximum Likelihood Solution

log p(x(n) |A) = log | det W | + ∑
i

log pi(a(n)
i )

ai = ∑
j

WijxjW = A−1; ϕ(ai) =
d

dai
log pi(ai)

D. Mackay. 2003.



Maximum Likelihood Solution

log p(x(n) |A) = log | det W | + ∑
i

log pi(a(n)
i )

∂
∂Wij

log p(x(n) |A) = [WT]−1
ij + x(n)

j ϕ(a(n)
i )

ai = ∑
j

WijxjW = A−1; ϕ(ai) =
d

dai
log pi(ai)

D. Mackay. 2003.



Maximum Likelihood Solution

D. Mackay. 2003.

Initialize W

for x ∈ X; do
a ← Wx

s ← ϕ(a)

W ← W + η([WT]−1 + sxT)



Maximum Likelihood Solution

D. Mackay. 2003.

Initialize W

for x ∈ X; do
a ← Wx

s ← ϕ(a)

W ← W + η([WT]−1 + sxT)

Choice of  p ⟺ ϕ



Maximum Likelihood Solution

D. Mackay. 2003.

Initialize W

for x ∈ X; do
a ← Wx

s ← ϕ(a)

W ← W + η([WT]−1 + sxT)

Identifiable when: 
1.  is not Gaussian (except 

perhaps one). 
2.  for all 

pi

pi ⊥ pj i, j

Choice of  p ⟺ ϕ



Non-linear ICA

A. Hyvarinen and P. Pajunen. 1998.



Non-linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

A. Hyvarinen and P. Pajunen. 1998.



Non-linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = f(s; θ); f : ℝd → ℝd

A. Hyvarinen and P. Pajunen. 1998.



Non-linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = f(s; θ); f : ℝd → ℝd

Goal: recover f −1

A. Hyvarinen and P. Pajunen. 1998.



Non-linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = f(s; θ); f : ℝd → ℝd

Goal: recover f −1

A. Hyvarinen and P. Pajunen. 1998.

Existence: for any random variable , 

there exists a function  such that 

 have density  (constructive). 

x ∈ ℝd

g : 𝒳 → 𝒮

s1, . . . , sd pθ(s)



Non-linear ICA

pθ(s) =
d

∏
i=1

pi(si; θ)

x = f(s; θ); f : ℝd → ℝd

Goal: recover f −1

A. Hyvarinen and P. Pajunen. 1998.

Existence: for any random variable , 

there exists a function  such that 

 have density  (constructive). 

x ∈ ℝd

g : 𝒳 → 𝒮

s1, . . . , sd pθ(s)

Non-uniqueness: the number of solutions  is 

at least as large as the class of measure-

preserving functions . 

g

h : [0,1]n → [0,1]n
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A. Hyvarinen and H. Morioka. 2016.

Theorem. Assume that  

(i) the observed data are generated from the detailed model, 

(ii) TCL is applied to learn a feature extractor , and 

(iii) the parameters  are “well-behaved”. 

Then, with infinite data we have that 

h(xt; θ)

λi,v

q(st) = Ah(x; θ) + b .
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s

x

u

θ

pθ(s) =
d

∏
i=1

pi(si |u; θ)

x = f(s; θ); f : ℝd → ℝd

r(x, u) =
n

∑
i=1

ψi(h(x; θ), u)

x̃ = (x, u); x̃* = (x, u*)
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Summary

Contrastive learning —> Self-supervised “heuristics”

SSL methods seem to lead to useful representations

Methods largely motivated (heuristically) by mutual information

 Self-supervised learning <—> identifiability in generative models
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