
Inference in Stochastic Processes Reading Group

Javier Antoran, Matt Ashman, Stratis Markou

24th February 2021

In the end we only care about functions

Gaussian processes (GPs) as a motivating example

Does functional inference mean non-parametrics?

NO!

Functional inference refers to performing probabilistic reasoning about functions
f directly, as opposed to model parameters θ.

p(θ|D) =
p(D|θ)p(θ)
p(D)

p(f |D) =
p(D|f)p(f)
p(D)

f could be the output of a parametric model.

Contents

1 Constructing (non-Gaussian) stochastic processes with linear combinations
of basis functions

2 Functional inference in neural networks

3 Stochastic differential equations (SDE)

Relevant topics that will not be covered

• Rigorous measure theoretic background

• Approximate inference in Gaussian processes

• Infinite width limits of neural networks - NTK

Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

• Basis function φ(x) : RD → RM .

e.g. φ(x) = [1, x, x2, x3, ..., xM−1]T

• Prior over w =⇒ prior over f(·).

p(f(X)) =

∫
δ [f(X)− Φ(X)w]︸ ︷︷ ︸

p(f(X)|w)

p(w)dw

Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

• Basis function φ(x) : RD → RM .

e.g. φ(x) = [1, x, x2, x3, ..., xM−1]T

• Prior over w =⇒ prior over f(·).

p(f(X)) =

∫
δ [f(X)− Φ(X)w]︸ ︷︷ ︸

p(f(X)|w)

p(w)dw

Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

• Basis function φ(x) : RD → RM .

e.g. φ(x) = [1, x, x2, x3, ..., xM−1]T

• Prior over w =⇒ prior over f(·).

p(f(X)) =

∫
δ [f(X)− Φ(X)w]︸ ︷︷ ︸

p(f(X)|w)

p(w)dw

Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

Left: {φm(x)}5m=1. Right: f(x) =
∑M
m=1 wmφm(x).

Weight space view of Gaussian processes

p(w) = N (w;0, I)

• Function-space prior:

p(f(X)) =

∫
δ [f(X)− Φ(X)w] p(w)dw = N (f ;µ,Kff)

µ = Φ(X)E[w] = 0 Kff = Φ(X)Φ(X)T

• Equivalent to GP prior with kernel

k(xi,xj) =
[
Φ(X)Φ(X)T

]
ij

= φ(xi)
Tφ(xj) =

M∑
m=1

φm(xi)φm(xj)

Weight space view of Gaussian processes

p(w) = N (w;0, I)

• Function-space prior:

p(f(X)) =

∫
δ [f(X)− Φ(X)w] p(w)dw = N (f ;µ,Kff)

µ = Φ(X)E[w] = 0 Kff = Φ(X)Φ(X)T

• Equivalent to GP prior with kernel

k(xi,xj) =
[
Φ(X)Φ(X)T

]
ij

= φ(xi)
Tφ(xj) =

M∑
m=1

φm(xi)φm(xj)

Weight space view of Gaussian processes

p(w) = N (w;0, I)

• Function-space prior:

p(f(X)) =

∫
δ [f(X)− Φ(X)w] p(w)dw = N (f ;µ,Kff)

µ = Φ(X)E[w] = 0 Kff = Φ(X)Φ(X)T

• Equivalent to GP prior with kernel

k(xi,xj) =
[
Φ(X)Φ(X)T

]
ij

= φ(xi)
Tφ(xj) =

M∑
m=1

φm(xi)φm(xj)

Non-Gaussian priors?

f(x) = φ(x)Tw

p(w) non-Gaussian? =⇒ non-Gaussian process p(f(·)).

Method for constructing non-Gaussian prior p(w):

pθ(w) =

∫
pθ(w|z)p(z)dz

• p(z) simple, i.e. p(z) = N (z;0, I)

• p(w) arbitrarily complex.

How to learn pθ(w|z)? From data (functions).

Non-Gaussian priors?

f(x) = φ(x)Tw

p(w) non-Gaussian? =⇒ non-Gaussian process p(f(·)).

Method for constructing non-Gaussian prior p(w):

pθ(w) =

∫
pθ(w|z)p(z)dz

• p(z) simple, i.e. p(z) = N (z;0, I)

• p(w) arbitrarily complex.

How to learn pθ(w|z)? From data (functions).

Non-Gaussian priors?

f(x) = φ(x)Tw

p(w) non-Gaussian? =⇒ non-Gaussian process p(f(·)).

Method for constructing non-Gaussian prior p(w):

pθ(w) =

∫
pθ(w|z)p(z)dz

• p(z) simple, i.e. p(z) = N (z;0, I)

• p(w) arbitrarily complex.

How to learn pθ(w|z)? From data (functions).

Learning non-Gaussian priors

Given K samples from N functions:

{
{xni , yni }

K
i=1︸ ︷︷ ︸

samples from fn(·)

}N
n=1

• Model as
yni = φ(xni)Twn + εni

• ML learning of {wn}Nn=1 and φ:

arg max
w,φ

N∑
n=1

log p(yn|Φ(Xn),wn)

• Train generative model on {wn}Nn=1 to learn pθ(w|z), i.e. VAE:

arg max
θ,ηe

N∑
n=1

Eqηe (z|wn) [log pθ(w
n|z)]−KL [qηe(z|wn)||p(z)]

Learning non-Gaussian priors

Given K samples from N functions:

{
{xni , yni }

K
i=1︸ ︷︷ ︸

samples from fn(·)

}N
n=1

• Model as
yni = φ(xni)Twn + εni

• ML learning of {wn}Nn=1 and φ:

arg max
w,φ

N∑
n=1

log p(yn|Φ(Xn),wn)

• Train generative model on {wn}Nn=1 to learn pθ(w|z), i.e. VAE:

arg max
θ,ηe

N∑
n=1

Eqηe (z|wn) [log pθ(w
n|z)]−KL [qηe(z|wn)||p(z)]

Learning non-Gaussian priors

Given K samples from N functions:

{
{xni , yni }

K
i=1︸ ︷︷ ︸

samples from fn(·)

}N
n=1

• Model as
yni = φ(xni)Twn + εni

• ML learning of {wn}Nn=1 and φ:

arg max
w,φ

N∑
n=1

log p(yn|Φ(Xn),wn)

• Train generative model on {wn}Nn=1 to learn pθ(w|z), i.e. VAE:

arg max
θ,ηe

N∑
n=1

Eqηe (z|wn) [log pθ(w
n|z)]−KL [qηe(z|wn)||p(z)]

Learning non-Gaussian priors

Given K samples from N functions:

{
{xni , yni }

K
i=1︸ ︷︷ ︸

samples from fn(·)

}N
n=1

• Model as
yni = φ(xni)Twn + εni

• ML learning of {wn}Nn=1 and φ:

arg max
w,φ

N∑
n=1

log p(yn|Φ(Xn),wn)

• Train generative model on {wn}Nn=1 to learn pθ(w|z), i.e. VAE:

arg max
θ,ηe

N∑
n=1

Eqηe (z|wn) [log pθ(w
n|z)]−KL [qηe(z|wn)||p(z)]

Efficient posterior inference

Given φ and pθ(w|z) = δ [dθ(z)−w]

• Sampling functions from prior:

z(s) ∼ p(z) w(s) = dθ(z
(s))

=⇒ f (s)(x) = φ(x)Tw(s)

• Sampling functions from posterior? Perform MCMC in latent space:

p(z|D∗, φ) ∝ p(y∗|Φ(X∗), z)p(z)

z(s)|D ∼ p(z|D∗, φ) w(s) = dθ(z
(s))

=⇒ f (s)(x) | D∗ = φ(x)Tw(s)

Efficient posterior inference

Given φ and pθ(w|z) = δ [dθ(z)−w]

• Sampling functions from prior:

z(s) ∼ p(z) w(s) = dθ(z
(s))

=⇒ f (s)(x) = φ(x)Tw(s)

• Sampling functions from posterior? Perform MCMC in latent space:

p(z|D∗, φ) ∝ p(y∗|Φ(X∗), z)p(z)

z(s)|D ∼ p(z|D∗, φ) w(s) = dθ(z
(s))

=⇒ f (s)(x) | D∗ = φ(x)Tw(s)

Efficient posterior inference

Given φ and pθ(w|z) = δ [dθ(z)−w]

• Sampling functions from prior:

z(s) ∼ p(z) w(s) = dθ(z
(s))

=⇒ f (s)(x) = φ(x)Tw(s)

• Sampling functions from posterior? Perform MCMC in latent space:

p(z|D∗, φ) ∝ p(y∗|Φ(X∗), z)p(z)

z(s)|D ∼ p(z|D∗, φ) w(s) = dθ(z
(s))

=⇒ f (s)(x) | D∗ = φ(x)Tw(s)

πVAE: end-to-end training (Mishra et al. 2020)

L =

N∑
n=1

log p(yn|Φ(Xn),wn) + Eqηe (z|wn)pθ(ŵn|z) [log p(yn|Φ(Xn), ŵn)]

−KL [qηe(z|wn)||p(z)]

• log p(y|Φ(X),w) =⇒ φ and w explain the data.

• Eqηe (z|w)

[
Epθ(ŵ|z) [log p(y|Φ(X), ŵ]

]
=⇒ φ and reconstructed w explain

the data.

• KL [qηe(z|w)||p(z)] =⇒ qηe(z|w) close to the prior p(z).

πVAE: learning a GP prior (Mishra et al. 2020)

πVAE trained on Gaussian process samples

Left: prior samples. Right: posterior predictive distribution.

πVAE: posterior inference (Mishra et al. 2020)

Left: πVAE, samples from cubic functions. Middle: πVAE, samples from RBF kernel.
Right: GP with RBF kernel

Stochastic process generator (Ma et al.)

Approximate stochastic process posterior

p(f |D) =
p(f)p(D|f)

p(D)
≈ qSPG(f)

‘Stochastic process generator’ (SPG) family:

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Non-Gaussian q(w) =⇒ non-Gaussian process qSPG(f).

• φm are a set of trainable basis functions.

Stochastic process generator (Ma et al.)

Approximate stochastic process posterior

p(f |D) =
p(f)p(D|f)

p(D)
≈ qSPG(f)

‘Stochastic process generator’ (SPG) family:

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Non-Gaussian q(w) =⇒ non-Gaussian process qSPG(f).

• φm are a set of trainable basis functions.

Functional variational inference

Function space ELBO:

L = Eq(f) [log p(D|f)]︸ ︷︷ ︸
nice

−KL [q(f)||p(f)]︸ ︷︷ ︸
not nice

KL between stochastic processes? Sun et al. (2019):

KL [q(f)||p(f)] = sup
n∈N,X∈Xn

KL [q(f(X))||p(f(X))]

Can’t compute supremum! =⇒ approximate with

KL [q(f)||p(f)] ≥ EXO∼c [KL [q(f(XO))||p(f(XO))]]

(However, true KL may not be finite...)

Functional variational inference

Function space ELBO:

L = Eq(f) [log p(D|f)]︸ ︷︷ ︸
nice

−KL [q(f)||p(f)]︸ ︷︷ ︸
not nice

KL between stochastic processes? Sun et al. (2019):

KL [q(f)||p(f)] = sup
n∈N,X∈Xn

KL [q(f(X))||p(f(X))]

Can’t compute supremum! =⇒ approximate with

KL [q(f)||p(f)] ≥ EXO∼c [KL [q(f(XO))||p(f(XO))]]

(However, true KL may not be finite...)

Functional variational inference

Function space ELBO:

L = Eq(f) [log p(D|f)]︸ ︷︷ ︸
nice

−KL [q(f)||p(f)]︸ ︷︷ ︸
not nice

KL between stochastic processes? Sun et al. (2019):

KL [q(f)||p(f)] = sup
n∈N,X∈Xn

KL [q(f(X))||p(f(X))]

Can’t compute supremum! =⇒ approximate with

KL [q(f)||p(f)] ≥ EXO∼c [KL [q(f(XO))||p(f(XO))]]

(However, true KL may not be finite...)

Functional variational inference

FVI via SPGs (Ma et al.)

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Approximate prior p(f) ≈ p̃SPG(f).

=⇒ Learns {φm}Mm=1, pθ(w|z) and q̃(z|f(XO)) ≈ p̃SPG(z|f(XO)) through
VAE-like ELBO.

• Share {φm}Mm=1 and pθ(w|z) between pSPG(f) and qSPG(f).

=⇒ Simplifies KL divergence:

KL [qSPG(f(XO))||pSPG(f(XO))]

≈ EpSPG(f(XO))

[∫
q̃(z|f(XO))

q(z)

p0(z)

]
dz

FVI via SPGs (Ma et al.)

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Approximate prior p(f) ≈ p̃SPG(f).

=⇒ Learns {φm}Mm=1, pθ(w|z) and q̃(z|f(XO)) ≈ p̃SPG(z|f(XO)) through
VAE-like ELBO.

• Share {φm}Mm=1 and pθ(w|z) between pSPG(f) and qSPG(f).

=⇒ Simplifies KL divergence:

KL [qSPG(f(XO))||pSPG(f(XO))]

≈ EpSPG(f(XO))

[∫
q̃(z|f(XO))

q(z)

p0(z)

]
dz

FVI via SPGs (Ma et al.)

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Approximate prior p(f) ≈ p̃SPG(f).

=⇒ Learns {φm}Mm=1, pθ(w|z) and q̃(z|f(XO)) ≈ p̃SPG(z|f(XO)) through
VAE-like ELBO.

• Share {φm}Mm=1 and pθ(w|z) between pSPG(f) and qSPG(f).

=⇒ Simplifies KL divergence:

KL [qSPG(f(XO))||pSPG(f(XO))]

≈ EpSPG(f(XO))

[∫
q̃(z|f(XO))

q(z)

p0(z)

]
dz

FVI via SPGs (Ma et al.)

Neural Networks as Stochastic Processes

Functions sampled from NN prior:

Can NNs be viewed as linear basis function models?

If we take a first order Taylor expansion of network outputs with respect to their
weights we obtain a basis function linear model:

• Lets define some NN fθ(·) and some weight setting θ∗:

fθ(x) ≈ f linθ (x) = fθ∗(x) +

(
∂fθ∗(x)

∂θ∗

)ᵀ

(θ − θ∗)

• f linθ (x) is a linear model in θ with basis functions φ(x) = ∂fθ∗ (x)
∂θ∗ [7].

• This corresponds to a GP with k(x1, x2) =
(
∂fθ∗ (x1)
∂θ∗

)ᵀ (
∂fθ∗ (x2)
∂θ∗

)
!

Could also make an argument about infinite width limits...

Can NNs be viewed as linear basis function models?

If we take a first order Taylor expansion of network outputs with respect to their
weights we obtain a basis function linear model:

• Lets define some NN fθ(·) and some weight setting θ∗:

fθ(x) ≈ f linθ (x) = fθ∗(x) +

(
∂fθ∗(x)

∂θ∗

)ᵀ

(θ − θ∗)

• f linθ (x) is a linear model in θ with basis functions φ(x) = ∂fθ∗ (x)
∂θ∗ [7].

• This corresponds to a GP with k(x1, x2) =
(
∂fθ∗ (x1)
∂θ∗

)ᵀ (
∂fθ∗ (x2)
∂θ∗

)
!

Could also make an argument about infinite width limits...

Can NNs be viewed as linear basis function models?

If we take a first order Taylor expansion of network outputs with respect to their
weights we obtain a basis function linear model:

• Lets define some NN fθ(·) and some weight setting θ∗:

fθ(x) ≈ f linθ (x) = fθ∗(x) +

(
∂fθ∗(x)

∂θ∗

)ᵀ

(θ − θ∗)

• f linθ (x) is a linear model in θ with basis functions φ(x) = ∂fθ∗ (x)
∂θ∗ [7].

• This corresponds to a GP with k(x1, x2) =
(
∂fθ∗ (x1)
∂θ∗

)ᵀ (
∂fθ∗ (x2)
∂θ∗

)
!

Could also make an argument about infinite width limits...

A Linearised NN-GP in action (Daxberger et. al.)

Inference in finite, non-Linearised NNs

• They are not GPs.

• Probabilistic inference over their weight space is intractable.

[Li et. al.]

Lets try weight Space VI

p(θ|D) ≥ ELBOq(θ) = Eq(θ)[log p(D|θ)]−KL(q(θ) || p(θ))

Empirical Underperformance

We know Mean Field distributions are flexible enough to do better [5]. It looks
like the problem is the inference!

We resort to functional variational inference!

The functional posterior is intractable for NNs so we again resort to functional
VI [12].

p(θ|D) ≥ ELBOq(f) = Eq(f))[log p(D|f)]−KL(q || p);

KL(q || p) = sup
n∈N,X∈Xn

DKL(q(f(X)) || p(f(X)))

By the information processing inequality, this should yield a tighter ELBO than
weight space VI [2].

log p(D) ≥ ELBOq(f) ≥ ELBOq(θ) (1)

Intuition: Different parameter settings induce different functions which explain
the data.

θ → f → y; I(y : f) ≥ I(y : θ) (2)

We resort to functional variational inference!

The functional posterior is intractable for NNs so we again resort to functional
VI [12].

p(θ|D) ≥ ELBOq(f) = Eq(f))[log p(D|f)]−KL(q || p);

KL(q || p) = sup
n∈N,X∈Xn

DKL(q(f(X)) || p(f(X)))

By the information processing inequality, this should yield a tighter ELBO than
weight space VI [2].

log p(D) ≥ ELBOq(f) ≥ ELBOq(θ) (1)

Intuition: Different parameter settings induce different functions which explain
the data.

θ → f → y; I(y : f) ≥ I(y : θ) (2)

The functional KL, again

• Supremum over all input sets is intractable to compute!

• Functional KL between GP and parametric models or between different
parametric models may not even be finite [2].

Approximations used by Sun et. al.

• Supremum formulation of functional KL suggests an adversarial learning
scheme: One player chooses approximate process q and the other chooses
the measurement set X.

max
q

min
X∈Xn

Eq(f))[log p(D|f)]−DKL(q(f(X)) || p(f(X)))

Sun et. al. find this to not work well in practise.

• Sampling-based measurement sets: Define a sampling distribution c
from which to draw X.

max
q
Eq(f)[log p(D|f)]− EX∼c[DKL(q(f(X)) || p(f(X)))]

A remaining issue might be estimating q(f(X))...

Approximations used by Sun et. al.

• Supremum formulation of functional KL suggests an adversarial learning
scheme: One player chooses approximate process q and the other chooses
the measurement set X.

max
q

min
X∈Xn

Eq(f))[log p(D|f)]−DKL(q(f(X)) || p(f(X)))

Sun et. al. find this to not work well in practise.

• Sampling-based measurement sets: Define a sampling distribution c
from which to draw X.

max
q
Eq(f)[log p(D|f)]− EX∼c[DKL(q(f(X)) || p(f(X)))]

A remaining issue might be estimating q(f(X))...

Choosing measurement points

Sun et. al. show that the resulting objective is still a lower bound on log p(D)
as long as XD ⊂ X.

Burt et. al. compare approaches on linear models:

• Randomly sample X once and leave it fixed.

• Resample X ∼ c in every iteration (random.)

Results: BNNs with Random sampling (Sun et. al.)

• Approximate functional VI is more flexible than weight space VI.

• In agreement with [5], at least 2 hidden layers are needed to capture in
between uncertainty with mean field weight parametrisation.

• Is functional VI a practical approach?

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time

2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal

3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location

2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical

3 Physical models, e.g. weather and climate

Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion

, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties

• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.

• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.

• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}.

Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian.

It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T) time. (Kalman filtering/smoothing) [3, 10]

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13],

2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt,

3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.

Learning SDEs with non-parametric priors [14]

Figure 1: Posterior inference in GPCM from [14] (edited).

Variational Inference for SDEs [1]

Given an SDE and observation model

dxt = f(xt, t)dt+ Σ1/2dβt (prior SDE, p)

yn = Hxn + σnε, where ε ∼ N (0, 1). (observation model)

Approximate its posterior using the linear SDE

dxt = (−A(t)xt + b(t))︸ ︷︷ ︸
g(xt,t)

dt+ Σ1/2dβ, (approximating SDE, q)

write q(xt) for its marginal distribution. KL between the exact SDE prior and
the approximating SDE [1] is

KL [q||p] = KL [q(x0)||p(x0)] +

+
1

2

∫ t1

t0

∫
(f(x, τ)− g(x, τ))>Σ−1(f(x, τ)− g(x, τ))q(xn)dxndτ.

Variational Inference for SDEs [1]

Given an SDE and observation model

dxt = f(xt, t)dt+ Σ1/2dβt (prior SDE, p)

yn = Hxn + σnε, where ε ∼ N (0, 1). (observation model)

Approximate its posterior using the linear SDE

dxt = (−A(t)xt + b(t))︸ ︷︷ ︸
g(xt,t)

dt+ Σ1/2dβ, (approximating SDE, q)

write q(xt) for its marginal distribution. KL between the exact SDE prior and
the approximating SDE [1] is

KL [q||p] = KL [q(x0)||p(x0)] +

+
1

2

∫ t1

t0

∫
(f(x, τ)− g(x, τ))>Σ−1(f(x, τ)− g(x, τ))q(xn)dxndτ.

Variational Inference for SDEs [1]

Given an SDE and observation model

dxt = f(xt, t)dt+ Σ1/2dβt (prior SDE, p)

yn = Hxn + σnε, where ε ∼ N (0, 1). (observation model)

Approximate its posterior using the linear SDE

dxt = (−A(t)xt + b(t))︸ ︷︷ ︸
g(xt,t)

dt+ Σ1/2dβ, (approximating SDE, q)

write q(xt) for its marginal distribution. KL between the exact SDE prior and
the approximating SDE [1] is

KL [q||p] = KL [q(x0)||p(x0)] +

+
1

2

∫ t1

t0

∫
(f(x, τ)− g(x, τ))>Σ−1(f(x, τ)− g(x, τ))q(xn)dxndτ.

Variational Inference for SDEs [1]

Given an SDE and observation model

dxt = f(xt, t)dt+ Σ1/2dβt (prior SDE, p)

yn = Hxn + σnε, where ε ∼ N (0, 1). (observation model)

Approximate its posterior using the linear SDE

dxt = (−A(t)xt + b(t))︸ ︷︷ ︸
g(xt,t)

dt+ Σ1/2dβ, (approximating SDE, q)

write q(xt) for its marginal distribution. KL between the exact SDE prior and
the approximating SDE [1] is

KL [q||p] = KL [q(x0)||p(x0)] +

+
1

2

∫ t1

t0

∫
(f(x, τ)− g(x, τ))>Σ−1(f(x, τ)− g(x, τ))q(xn)dxndτ.

Variational Inference for SDEs [1]

0 1 2 3 4 5
t

2

1

0

1

2

x t

Exact and approximate posterior (pass 0)
Exact posterior
Approximate posterior

0 1 2 3 4 5
t

A

0 1 2 3 4 5
t

b

Variational Inference for SDEs [1]

0 1 2 3 4 5
t

2

1

0

1

2

x t

Exact and approximate posterior (pass 1)
Exact posterior
Approximate posterior

0 1 2 3 4 5
t

A

0 1 2 3 4 5
t

b

Variational Inference for SDEs [1]

0 1 2 3 4 5
t

2

1

0

1

2

x t

Exact and approximate posterior (pass 5)
Exact posterior
Approximate posterior

0 1 2 3 4 5
t

A

0 1 2 3 4 5
t

b

Variational Inference for SDEs [1]

0 1 2 3 4 5
t

2

1

0

1

2

x t

Exact and approximate posterior (pass 10)
Exact posterior
Approximate posterior

0 1 2 3 4 5
t

A

0 1 2 3 4 5
t

b

Variational Inference for SDEs [1]

0 1 2 3 4 5
t

2

1

0

1

2

x t

Exact and approximate posterior (pass 20)
Exact posterior
Approximate posterior

0 1 2 3 4 5
t

A

0 1 2 3 4 5
t

b

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)

∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition

∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!

Stochastic integrals

In particular, the chain rule is different under Ito and Stratonovich.

Ito calculus [9]

dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx+

1

2
Tr

[
∂2Φ

∂x2
g(x, t)g(x, t)>

]
dt

Stratonovich calculus [11]

◦dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx

Stochastic integrals

In particular, the chain rule is different under Ito and Stratonovich.

Ito calculus [9]

dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx+

1

2
Tr

[
∂2Φ

∂x2
g(x, t)g(x, t)>

]
dt

Stratonovich calculus [11]

◦dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx

Stochastic integrals

In particular, the chain rule is different under Ito and Stratonovich.

Ito calculus [9]

dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx+

1

2
Tr

[
∂2Φ

∂x2
g(x, t)g(x, t)>

]
dt

Stratonovich calculus [11]

◦dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx

Stochastic integrals

In particular, the chain rule is different under Ito and Stratonovich.

Ito calculus [9]

dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx+

1

2
Tr

[
∂2Φ

∂x2
g(x, t)g(x, t)>

]
dt

Stratonovich calculus [11]

◦dΦ(x, t) =
∂Φ

∂t
dt+

∂Φ

∂x
dx

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.

Scalable gradients for nonlinear SDEs [8]

Figure 2: Training data, approximate q, learned p and latent dynamics. [8]

Scalable gradients for nonlinear SDEs [8]

Figure 2: Training data, approximate q, learned p and latent dynamics. [8]

Thank you

Thank you for your attention!

References I

[1] C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J. Shawe-Taylor.
Variational inference for diffusion processes. 2008.

[2] D. R. Burt, S. W. Ober, A. Garriga-Alonso, and M. van der Wilk.
Understanding variational inference in function-space.

[3] M. Y. Byron, K. V. Shenoy, and M. Sahani. Derivation of kalman filtering
and smoothing equations. In Technical report. Stanford University, 2004.

[4] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M.
Hernández-Lobato. Bayesian deep learning via subnetwork inference, 2021.

[5] A. Y. Foong, D. R. Burt, Y. Li, and R. E. Turner. On the expressiveness of
approximate inference in bayesian neural networks. arXiv preprint
arXiv:1909.00719, 2019.

References II

[6] J. Hartikainen and S. Särkkä. Kalman filtering and smoothing solutions to
temporal gaussian process regression models. In 2010 IEEE international
workshop on machine learning for signal processing, pages 379–384. IEEE,
2010.

[7] A. Immer, M. Korzepa, and M. Bauer. Improving predictions of bayesian
neural networks via local linearization, 2020.

[8] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud. Scalable gradients for
stochastic differential equations. In International Conference on Artificial
Intelligence and Statistics, pages 3870–3882. PMLR, 2020.

[9] B. Oksendal. Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

[10] S. Särkkä. Bayesian filtering and smoothing. Number 3. Cambridge
University Press, 2013.

References III

[11] R. Stratonovich. A new representation for stochastic integrals and
equations. SIAM Journal on Control, 4(2):362–371, 1966.

[12] S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional variational bayesian
neural networks, 2019.

[13] M. Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial intelligence and statistics, pages 567–574. PMLR,
2009.

[14] F. Tobar, T. D. Bui, and R. E. Turner. Learning stationary time series using
gaussian processes with nonparametric kernels. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

	References

