
Inference in Stochastic Processes Reading Group

Javier Antoran, Matt Ashman, Stratis Markou

24th February 2021



In the end we only care about functions



Gaussian processes (GPs) as a motivating example



Does functional inference mean non-parametrics?

NO!

Functional inference refers to performing probabilistic reasoning about functions
f directly, as opposed to model parameters θ.

p(θ|D) =
p(D|θ)p(θ)
p(D)

p(f |D) =
p(D|f)p(f)
p(D)

f could be the output of a parametric model.



Contents

1 Constructing (non-Gaussian) stochastic processes with linear combinations
of basis functions

2 Functional inference in neural networks

3 Stochastic differential equations (SDE)



Relevant topics that will not be covered

• Rigorous measure theoretic background

• Approximate inference in Gaussian processes

• Infinite width limits of neural networks - NTK



Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

• Basis function φ(x) : RD → RM .

e.g. φ(x) = [1, x, x2, x3, ..., xM−1]T

• Prior over w =⇒ prior over f(·).

p(f(X)) =

∫
δ [f(X)− Φ(X)w]︸ ︷︷ ︸

p(f(X)|w)

p(w)dw
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Basis function view

f(x) =

M∑
m=1

wmφm(x) = φ(x)Tw

Left: {φm(x)}5m=1. Right: f(x) =
∑M
m=1 wmφm(x).



Weight space view of Gaussian processes

p(w) = N (w;0, I)

• Function-space prior:

p(f(X)) =

∫
δ [f(X)− Φ(X)w] p(w)dw = N (f ;µ,Kff )

µ = Φ(X)E[w] = 0 Kff = Φ(X)Φ(X)T

• Equivalent to GP prior with kernel

k(xi,xj) =
[
Φ(X)Φ(X)T

]
ij

= φ(xi)
Tφ(xj) =

M∑
m=1

φm(xi)φm(xj)
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Non-Gaussian priors?

f(x) = φ(x)Tw

p(w) non-Gaussian? =⇒ non-Gaussian process p(f(·)).

Method for constructing non-Gaussian prior p(w):

pθ(w) =

∫
pθ(w|z)p(z)dz

• p(z) simple, i.e. p(z) = N (z;0, I)

• p(w) arbitrarily complex.

How to learn pθ(w|z)? From data (functions).
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Learning non-Gaussian priors

Given K samples from N functions:

{
{xni , yni }

K
i=1︸ ︷︷ ︸

samples from fn(·)

}N
n=1

• Model as
yni = φ(xni )Twn + εni

• ML learning of {wn}Nn=1 and φ:

arg max
w,φ

N∑
n=1

log p(yn|Φ(Xn),wn)

• Train generative model on {wn}Nn=1 to learn pθ(w|z), i.e. VAE:

arg max
θ,ηe

N∑
n=1

Eqηe (z|wn) [log pθ(w
n|z)]−KL [qηe(z|wn)||p(z)]
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Efficient posterior inference

Given φ and pθ(w|z) = δ [dθ(z)−w]

• Sampling functions from prior:

z(s) ∼ p(z) w(s) = dθ(z
(s))

=⇒ f (s)(x) = φ(x)Tw(s)

• Sampling functions from posterior? Perform MCMC in latent space:

p(z|D∗, φ) ∝ p(y∗|Φ(X∗), z)p(z)

z(s)|D ∼ p(z|D∗, φ) w(s) = dθ(z
(s))

=⇒ f (s)(x) | D∗ = φ(x)Tw(s)
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πVAE: end-to-end training (Mishra et al. 2020)

L =

N∑
n=1

log p(yn|Φ(Xn),wn) + Eqηe (z|wn)pθ(ŵn|z) [log p(yn|Φ(Xn), ŵn)]

−KL [qηe(z|wn)||p(z)]

• log p(y|Φ(X),w) =⇒ φ and w explain the data.

• Eqηe (z|w)

[
Epθ(ŵ|z) [log p(y|Φ(X), ŵ]

]
=⇒ φ and reconstructed w explain

the data.

• KL [qηe(z|w)||p(z)] =⇒ qηe(z|w) close to the prior p(z).



πVAE: learning a GP prior (Mishra et al. 2020)

πVAE trained on Gaussian process samples

Left: prior samples. Right: posterior predictive distribution.



πVAE: posterior inference (Mishra et al. 2020)

Left: πVAE, samples from cubic functions. Middle: πVAE, samples from RBF kernel.
Right: GP with RBF kernel



Stochastic process generator (Ma et al.)

Approximate stochastic process posterior

p(f |D) =
p(f)p(D|f)

p(D)
≈ qSPG(f)

‘Stochastic process generator’ (SPG) family:

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Non-Gaussian q(w) =⇒ non-Gaussian process qSPG(f).

• φm are a set of trainable basis functions.
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Functional variational inference

Function space ELBO:

L = Eq(f) [log p(D|f)]︸ ︷︷ ︸
nice

−KL [q(f)||p(f)]︸ ︷︷ ︸
not nice

KL between stochastic processes? Sun et al. (2019):

KL [q(f)||p(f)] = sup
n∈N,X∈Xn

KL [q(f(X))||p(f(X))]

Can’t compute supremum! =⇒ approximate with

KL [q(f)||p(f)] ≥ EXO∼c [KL [q(f(XO))||p(f(XO))]]

(However, true KL may not be finite...)
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Functional variational inference



FVI via SPGs (Ma et al.)

fSPG(x) =
∑
m=1

wmφm(x), q(w) =

∫
pθ(w|z)q(z)dz

• Approximate prior p(f) ≈ p̃SPG(f).

=⇒ Learns {φm}Mm=1, pθ(w|z) and q̃(z|f(XO)) ≈ p̃SPG(z|f(XO)) through
VAE-like ELBO.

• Share {φm}Mm=1 and pθ(w|z) between pSPG(f) and qSPG(f).

=⇒ Simplifies KL divergence:

KL [qSPG(f(XO))||pSPG(f(XO))]

≈ EpSPG(f(XO))

[∫
q̃(z|f(XO))

q(z)

p0(z)

]
dz
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FVI via SPGs (Ma et al.)



Neural Networks as Stochastic Processes

Functions sampled from NN prior:



Can NNs be viewed as linear basis function models?

If we take a first order Taylor expansion of network outputs with respect to their
weights we obtain a basis function linear model:

• Lets define some NN fθ(·) and some weight setting θ∗:

fθ(x) ≈ f linθ (x) = fθ∗(x) +

(
∂fθ∗(x)

∂θ∗

)ᵀ

(θ − θ∗)

• f linθ (x) is a linear model in θ with basis functions φ(x) = ∂fθ∗ (x)
∂θ∗ [7].

• This corresponds to a GP with k(x1, x2) =
(
∂fθ∗ (x1)
∂θ∗

)ᵀ (
∂fθ∗ (x2)
∂θ∗

)
!

Could also make an argument about infinite width limits...
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A Linearised NN-GP in action (Daxberger et. al.)



Inference in finite, non-Linearised NNs

• They are not GPs.

• Probabilistic inference over their weight space is intractable.

[Li et. al.]



Lets try weight Space VI

p(θ|D) ≥ ELBOq(θ) = Eq(θ)[log p(D|θ)]−KL(q(θ) || p(θ))



Empirical Underperformance

We know Mean Field distributions are flexible enough to do better [5]. It looks
like the problem is the inference!



We resort to functional variational inference!

The functional posterior is intractable for NNs so we again resort to functional
VI [12].

p(θ|D) ≥ ELBOq(f) = Eq(f))[log p(D|f)]−KL(q || p);

KL(q || p) = sup
n∈N,X∈Xn

DKL(q(f(X)) || p(f(X)))

By the information processing inequality, this should yield a tighter ELBO than
weight space VI [2].

log p(D) ≥ ELBOq(f) ≥ ELBOq(θ) (1)

Intuition: Different parameter settings induce different functions which explain
the data.

θ → f → y; I(y : f) ≥ I(y : θ) (2)
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The functional KL, again

• Supremum over all input sets is intractable to compute!

• Functional KL between GP and parametric models or between different
parametric models may not even be finite [2].



Approximations used by Sun et. al.

• Supremum formulation of functional KL suggests an adversarial learning
scheme: One player chooses approximate process q and the other chooses
the measurement set X.

max
q

min
X∈Xn

Eq(f))[log p(D|f)]−DKL(q(f(X)) || p(f(X)))

Sun et. al. find this to not work well in practise.

• Sampling-based measurement sets: Define a sampling distribution c
from which to draw X.

max
q
Eq(f)[log p(D|f)]− EX∼c[DKL(q(f(X)) || p(f(X)))]

A remaining issue might be estimating q(f(X))...
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Choosing measurement points

Sun et. al. show that the resulting objective is still a lower bound on log p(D)
as long as XD ⊂ X.

Burt et. al. compare approaches on linear models:

• Randomly sample X once and leave it fixed.

• Resample X ∼ c in every iteration (random.)



Results: BNNs with Random sampling (Sun et. al.)

• Approximate functional VI is more flexible than weight space VI.

• In agreement with [5], at least 2 hidden layers are needed to capture in
between uncertainty with mean field weight parametrisation.

• Is functional VI a practical approach?



Stochastic Differential Equations

Appropriate when the data generating process is

1 In continuous time
2 Causal
3 Partly driven by noise

Applications satisfying these criteria:

1 Tracking and location
2 Medical
3 Physical models, e.g. weather and climate
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Stochastic Differential Equations

xtn−1

ytn−1

xtn

ytn

xtn+1

ytn+1

• SDE governs dynamics of latent xt.

• Observation model p(yt|xt) generates observed yt.

What do we gain?

• Better inductive biases.

• Bake prior beliefs into the model.

• Principled handling of irregularly spaced data.
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An introduction to SDEs

We call xt the solution to an SDE with drift f and diffusion g if

xt = x0 +

∫ t1

t0

f(xτ , τ)dτ +

∫ t1

t0

g(xτ , τ)dβτ

where βt is a standard Brownian motion, with the properties
• Initialisation: β0 = 0.
• Rate of change: βt2 − βt1 ∼ N (0, t2 − t1) where t1 < t2.
• Independence: βt3 ⊥ βt1 |βt2 whenever t1 < t2 < t3.

For the moment, think the integrals as left-endpoint Riemann integrals∫ b

a
g(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

g(xτk , τ)(βτk+1
− βτk)

where a = τ1 < ... < τN = b,∆ = max{τk+1 − τk}. Alternatively written

dxt = f(xt, t)dt+ g(xt, t)dβt.
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Linear SDEs and GPs

When the SDE is linear
dxt = F (t)xtdt+G(t)dβt,

xt is a GP, which is also Markovian. It is sometimes possible to convert a GP
kernel to an equivalent SDE – reduces complexity from O(T ). [6]

Solution: xt = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, τ)︸ ︷︷ ︸
Impulse response fn.

G(τ)dβτ .

When F (t) = F , impulse response is Ψ(t, t′) = exp[(t− t′)F ].

Given a factorising Gaussian observation model p(y|x) =
∏N
n=1 p(yn|xn)

xn

yn

xn+1

yn+1

Compute posterior in O(T ) time. (Kalman filtering/smoothing) [3, 10]
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Learning SDEs with non-parametric priors [14]

Assume the GP convolution model (GPCM) of the form

xt =

∫ ∞
−∞

h(τ)dβτ , where h ∼ GP(0, kh).

Conditioned on h(t), xt is a GP, with kernel

kf |h(t1, t2) = h(t) ∗ h(−t), where t = |t2 − t1|.

Three challenges:

1 xt depends on convolution between infinite-dimensional h and βt.

2 The noise increments dβt must be treated carefully.

3 xt is nonlinear in h, βt – marginal likelihood is intractable.

Solution: 1 use sparse GP inducing points [13], 2 to infer h and a smoothed
version of βt, 3 via the Evidence Lower Bound.
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Learning SDEs with non-parametric priors [14]

Figure 1: Posterior inference in GPCM from [14] (edited).



Variational Inference for SDEs [1]

Given an SDE and observation model

dxt = f(xt, t)dt+ Σ1/2dβt (prior SDE, p)

yn = Hxn + σnε, where ε ∼ N (0, 1). (observation model)

Approximate its posterior using the linear SDE

dxt = (−A(t)xt + b(t))︸ ︷︷ ︸
g(xt,t)

dt+ Σ1/2dβ, (approximating SDE, q)

write q(xt) for its marginal distribution. KL between the exact SDE prior and
the approximating SDE [1] is

KL [q||p] = KL [q(x0)||p(x0)] +

+
1

2

∫ t1

t0

∫
(f(x, τ)− g(x, τ))>Σ−1(f(x, τ)− g(x, τ))q(xn)dxndτ.
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Stochastic integrals

Suppose we want to compute the integral∫ b

a
Φ(xτ , τ)dβτ .

Ito definition (one we saw earlier)∫
Φ(xτ , τ)dβτ = lim

|∆|→0

N∑
n=1

Φ(xτk , τ)(βτk+1
− βτk)

Stratonovich definition∫
Φ(xτ , τ) ◦ dβτ = lim

|∆|→0

N∑
n=1

Φ

(
xτk+1

+ xτk
2

, t

)
(βτk+1

− βτk)

In regular calculus, these are equivalent. In stochastic calculus they are not –
they give different answers!
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Stochastic integrals

In particular, the chain rule is different under Ito and Stratonovich.

Ito calculus [9]

dΦ(x, t) =
∂Φ
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dt+

∂Φ

∂x
dx+

1

2
Tr

[
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∂x2
g(x, t)g(x, t)>

]
dt
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Scalable gradients for nonlinear SDEs [8]

Uses KL between SDEs [1] and Stratonovich calculus [11] to train SDEs.

Consider prior and approximating SDEs sharing the same noise model

dxt = fθ(xt, t)dt+ g(xt, t)dβt (prior SDE. p)

dxt = fφ(xt, t)dt+ g(xt, t)dβt (approximating SDE, q)

Train by optimising the ELBO

p(y1, ..., yn|θ, φ) ≥ Eq

[
N∑
n=1

p(yn|xtn)− 1

2

∫ T

0

∣∣∣∣fθ(xτ , τ)− fφ(xτ , τ)

g(xτ , τ)

∣∣∣∣2 dτ
]
,

where Eq is w.r.t. the approximating SDE.

1 Forward: Solve approximating SDE numerically forwards.

2 Backward: Solve an augmented SDE backwards, keeping track of
derivatives of objective w.r.t. θ, φ.

Stratonovich yields simplified equations for the dynamics of adjoint SDE.
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Figure 2: Training data, approximate q, learned p and latent dynamics. [8]
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Thank you

Thank you for your attention!
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