ML Interpretability: Beyond Feature Importance

Javier Antorán (ja666@cam.ac.uk) PhD Student, University of Cambridge @JaviAC7

Recent Trends in ML Research and what they mean for Interpretability

Javier Antorán (ja666@cam.ac.uk) PhD Student, University of Cambridge @JaviAC7

Talk Outline

- Existing Approaches to Interpretability
- "Counterfactual" Interpretability
- Uncertainty in ML
- Transparency in ML Systems that Express Uncertainty with CLUE
- Questions / Feedback

Interpretable Data Driven Decision Making

• Generalised Linear Models:

$$\mu = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 \dots$$

- Importance of x_i is $|w_i|$
- Polarity of x_i is **sign** (w_i)

Not Very Interpretable Data Driven Decision Making

- Capture non-linear functions (NNs are universal function approximators)
- Scale to high dimensional problems
- Scale to massive datasets
- Simulate complex systems
- Etc

Feature Importance: LIME

• We approximate non-linear model Locally with Linear Model

$$\mu = f_{NN}(\mathbf{x})$$

$$\mu_{approx} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 \dots$$

Lime Explanation is $W_1, W_2, W_3 \dots$

Here explanation is more reliable in x_1 than x_0

Feature Importance on Images

- Per class weight vectors forms a "template images" of positive and negative contributions
- Can become meaningless for strongly non-linear functions

Counterfactual Explanations to the Rescue!

- Counterfactuals capture the notion what would have happened if something had been different
- We can ask a similar question: "What features would I need to remove such that my model's <u>confidence decreases?</u>"
 - Or: "What features would I need to remove such that my model's prediction changes?"
- This gives a model-agnostic question we can answer to provide insights to users. — Explanation has Clear Meaning

Counterfactual Explanations for Image Classification

Input (99.9%)

CA

Chang et. al., 2018

Uncertainty in ML

People saying AI will take over the world:

Meanwhile, my Deep Neural Network:

Sources of Uncertainty

Is there class overlap in our data? — Noise (Aleatoric) Uncertainty

Have we observed enough data to make confident predictions? — Model (Epistemic) Uncertainty

What is Model Uncertainty (1/3)

What is Model Uncertainty (2/3)

What is Model Uncertainty (3/3)

Weights go from single values to probability distributions!

Approximations

Realistic Loss Landscape

Weights

Our Uncertainty Estimates are Almost Always Biased by Our Approximations

Quantifying Uncertainty

Regression

Uncertainty in Practise

 Robustness in Critical Applications (Driving, Medical Diagnosis, etc) — Reject Option

 Dataset Building, Safety, Fairness (Identifying disparities in representation of subgroups in data, etc)

• Active Learning (Sparse Labels, Drug Discovery)

• Try out Bayesian Deep Learning with our Public Repo

github.com/JavierAntoran/Bayesian-Neural-Networks

Are Uncertainty Aware Systems Interpretable?

- Thankfully, Yes!*
- They are as interpretable as regular ML models**
- Uncertainty can help users understand prediction in some cases
 - Polyp segmentation example:

(a) input image

(c) EFCN-8 prediction

(e) EFCN-8 uncertainty

(g) EFCN-8 interpretability Wickstrøm, et. al., 2019

**But what about when our ML System Doesn't Know the Answer?

Explaining Uncertainty Estimates

- We would like to highlight the evidence for each class.
- What if there is conflicting evidence (noise) or a lack of evidence for predefined classes (model uncertainty)?
- Recall that Uncertainty Estimates are Non-Linear even for simplest models.

Problem is well posed again when using Counterfactuals

How can we Ensure that Counterfactuals are Relevant?

Adversarial examples

 Adversarial examples for uncertainty Sensitivity

 $H(\mathbf{y} \,|\, \mathbf{x}_0) = 1.77$

 $H(\mathbf{y} \,|\, \mathbf{x}_{sens}) = 0.12$

Lets Look at Data Driven Drug Discovery

• We can restrict hypothesis space to manifold captured by generative model: this ensures relevant proposals

Lets do the same for Counterfactuals

Sensitivity

 $H(\mathbf{y} \,|\, \mathbf{x}_0) = 1.77$

 $H(\mathbf{y} \mid \mathbf{x}_{sens}) = 0.12$

CLUE

CLUE: Counterfactual Latent Uncertainty Explanations

"What is the **smallest change** we need to make to an input, **while staying in-distribution**, such that our model produces more **certain predictions?**"

The CLUE Algorithm

Displaying CLUEs to Users

 $\Delta \mathbf{x} = \mathbf{x}_{\text{CLUE}} - \mathbf{x}_0$

Figure 5: Example image and tabular CLUEs.

Comparing CLUE to Feature Importance (LIME / SHAP)

- In high uncertainty scenarios, it is difficult to build an explanation in terms of the provided information (features)
- CLUE's counterfactual nature allows it to add new information

Original	CLUE	$\Delta CLUE$	LIME A	LIME B	LIME C	SHAP A	SHAP B	SHAP C
1	6	lo	2	2	2	2 and	and the second	1.00
$\hat{y}=$ 3	$\hat{y}=$ 6		class: 3	class: 5	class: 6	class: 3	class: 5	class: 6
4	Q	Q	C	CI	CI		Ser.	GA
$\hat{y}=$ 6	$\hat{y}=$ 0		class: 6	class: 0	class: 9	class: 6	class: 0	class: 9
		17	class: 7	class: 0	class: 9	class: 7	class: 0	class: 9

User Study: Setup (1/2)

Human Simulability: Users are shown context examples and are tasked with predicting model behaviour on new datapoint.

	Uncertain		Certain		?
Age	Less than 25	Age	Less than 25	Age	Less than 25
Race	Caucasian	Race	African-American	Race	Hispanic
Sex	Male	Sex	Male	Sex	Male
Current Charge	Misdemeanour	Current Charge	Misdemeanour	Current Charge	Misdemeanour
Reoffended Before	Yes	Reoffended Before	No	Reoffended Before	No
Prior Convictions	1	Prior Convictions	0	Prior Convictions	0
Days Served	0	Days Served	0	Days Served	0

User Study: Setup (2/2)

Tasks:

- COMPAS (Criminal Recidivism Prediction, 7 dim)
- LAST (Academic Performance Prediction, 4 dim)

Users:

- University Students with ML experience
- 10 Users per approach, 10 Questions per Dataset

Figure 8: Experimental workflow for our tabular data user study.

User Study: Results

Method	N. participants	Accuracy (%)
Random	10	61.67
Sensitivity	10	52.78
Human	10	62.22
CLUE	10	82.22

CLUE's improvement over all other approaches is statistically significant

(Using Nemenyi test for average ranks across test questions)

Now with Images:

We modify the MNIST train set to introduce Out Of Distribution (model) uncertainty.

Example	CLUE	Changes			
	-7	1999-1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -			
τ		7	Method	N. participants	Accuracy
Uncertain = True Example	Uncertain: False	Changes	Unc.	5	0.67
4	1	4	CLUE	5	0.88
	4				

Uncertain = True

Uncertain: False

Thanks to my Collaborators!

Javier Antorán ja666@cam.ac.uk

Umang Bhatt usb20@cam.ac.uk Tameem Adel tah47@cam.ac.uk

Adrian Weller aw665@cam.ac.uk

José Miguel Hernández-Lobato jmh233@cam.ac.uk

Questions?

Read The Full Paper at: arxiv.org/abs/2006.06848

See More of my Research (+slides): javierantoran.github.io/about/

Contact Me: ja666@cam.ac.uk