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Reading group outline

1. Preliminaries: probabilistic inference in neural networks 
and the linearised Laplace method

2. Paper overview: “Improving predictions of Bayesian 
neural networks via local linearization”

3. Informal discussion



Preliminaries



Preliminaries: open problems in deep learning
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Model Selection

Overconfidence

https://vitalab.github.io/article/2019/07/11/overconfident.html



Preliminaries: probabilistic inference in NNs

p(θ |x, y) = p(y | f(θ, x))π(θ)
p(y |x)

1. Place a prior distribution  over NN parameters. 

2. Define some likelihood function  to characterise the 
agreement of the NN function   with the observations  

3. Update the weight distribution using Bayes’ rule

π(θ)
p(y | f(θ, x))

f(θ, ⋅ ) (y, x)

θ̃ ∈ argmaxθ log p(y | f (θ, x)) + log π(θ)
data fit regulariser



Preliminaries: uncertainty estimation

+

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θ
data fit regulariser

+

p(θ |y, x) = 1
exp(ℳ) exp(−ℒf(θ)) f(θ, ⋅ ), θ ∼ p(θ |y, x)

+



Preliminaries: model selection

p(θ |y, x) = 1
exp(ℳ) exp(−ℒf(θ))ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

ℳ = log p(y |x)

The normalisation constant, , is the marginal likelihood, or model evidence. 
It is the probability that our observations where generated by our prior. It provides 
an objective for hyperparameter selection without the need for validation data.

ℳ

= log∫ exp(−ℒf(θ))dν= log∫ p(y | f(θ, x))dπ

θ θ θ



Preliminaries: automatic Occam’s razor



Preliminaries: the Laplace approximation

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θθ̃
ℳ = log∫ exp(−ℒf(θ))dν

For NNs this integral is intractable

Idea: Find a mode of :  and perform 2-order Taylor expansionℒf θ̃

Issue: A lot of mass falls in low density region, leading to bad predictions

'f(θ) = ℒf(θ̃) + | |θ − θ̃ | |2
∂2

θℒf (θ̃)

∂2
θℒf(θ̃)

By inspection,  is proportional to   where exp(−'f,θ̃(θ)) )(θ̃, (∂2
θℒf (θ̃))−1 )

∂2
θℒf (θ̃)) = ∂2

θ log p(y | f (θ̃, x)) + ∂2
θ log π(θ̃) π(θ) → )(θ; 0, Λ−1)



PAPER DISCUSSION: 

IMPROVING PREDICTIONS OF BAYESIAN 
NEURAL NETWORKS VIA LOCAL LINEARIZATION


