Mathematics of Deep Learning Reading Group. April 28th, 2022

Developments in Inference with Linearised Neural Networks

Riccardo Barbano, Javier Antorán

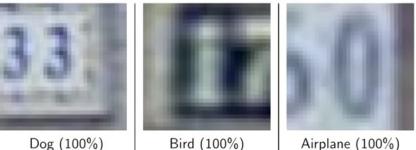
- 1. Preliminaries: probabilistic inference in neural networks and the linearised Laplace method
- 2. Paper overview: "Improving predictions of Bayesian neural networks via local linearization"
- 3. Informal discussion

Preliminaries

Preliminaries: open problems in deep learning

Overconfidence

Training on CIFAR10 - Test on SVHN



Dog (100%)

Airplane (100%)

10.0 7.5 5.0 2.5 0.0 -2.5

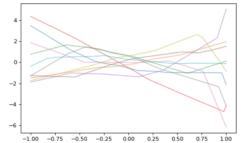
https://vitalab.github.io/article/2019/07/11/overconfident.html

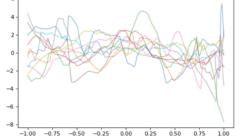
Model Selection

1 Hidden Layer

5 Hidden Layer

20 Hidden Layer



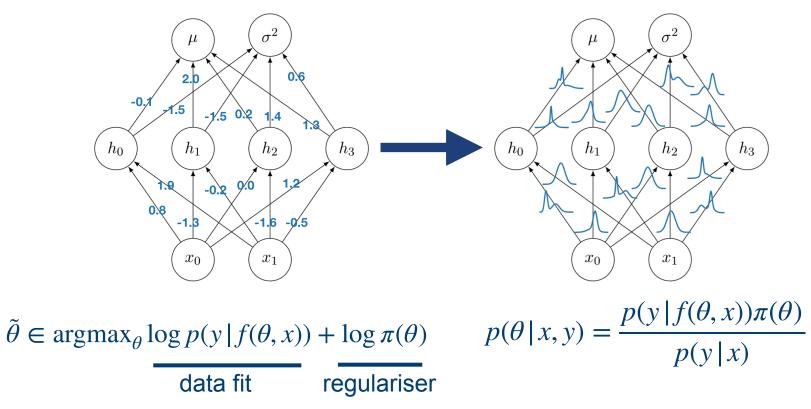


0.25 0.50 0.75 1.00

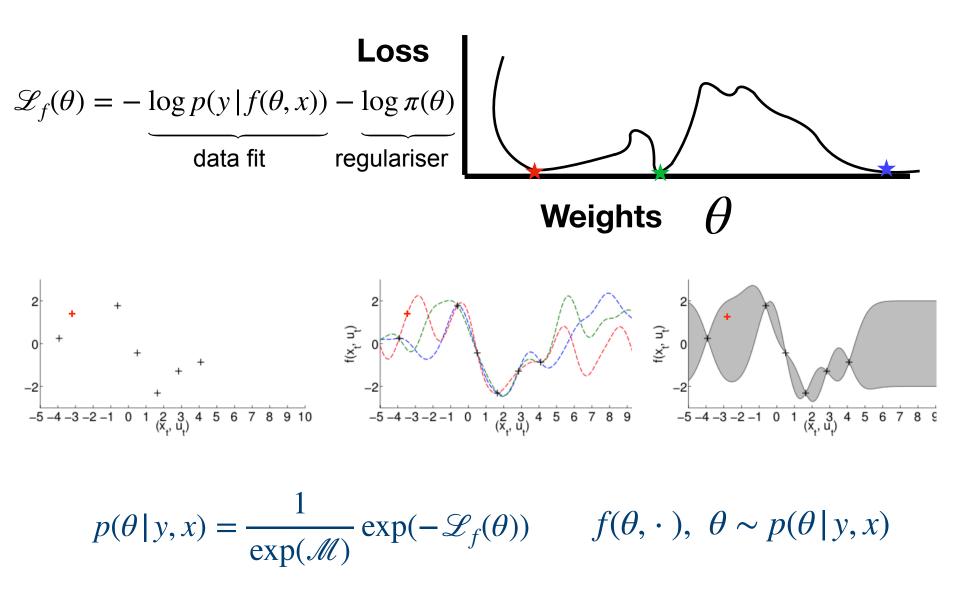
-1.00 -0.75 -0.50 -0.25 0.00

Preliminaries: probabilistic inference in NNs

- **1.** Place a prior distribution $\pi(\theta)$ over NN parameters.
- **2.** Define some likelihood function $p(y | f(\theta, x))$ to characterise the agreement of the NN function $f(\theta, \cdot)$ with the observations (y, x)
- 3. Update the weight distribution using Bayes' rule



Preliminaries: uncertainty estimation



$$\mathscr{L}_{f}(\theta) = -\log p(y | f(\theta, x)) - \log \pi(\theta) \quad p(\theta | y, x) = \frac{1}{\exp(\mathscr{M})} \exp(-\mathscr{L}_{f}(\theta))$$

1

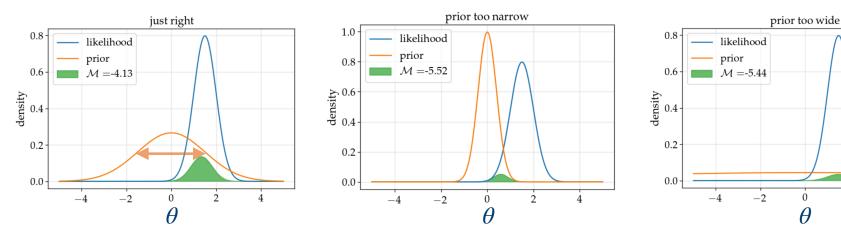
2

0

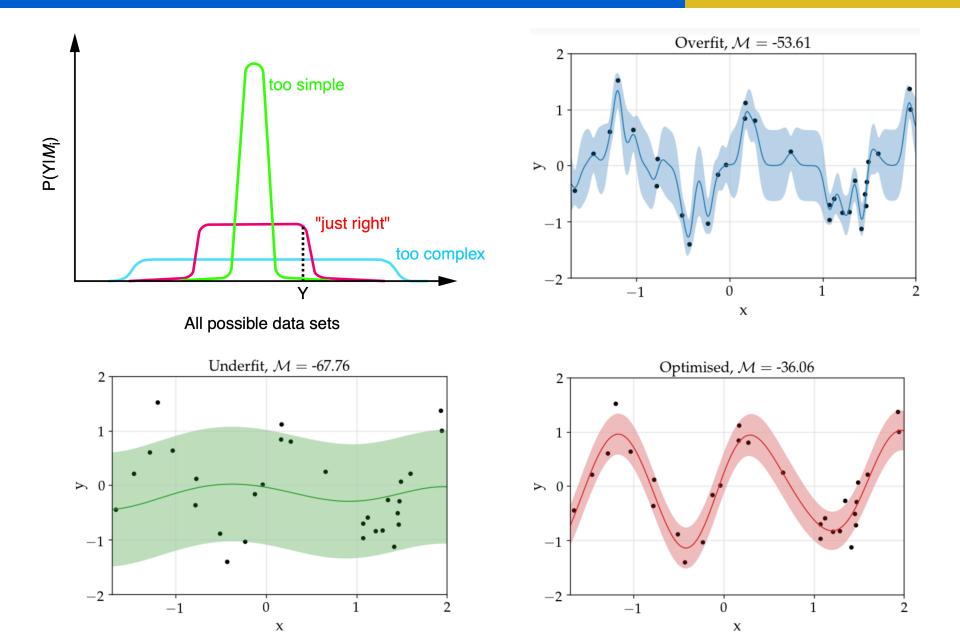
θ

The normalisation constant, \mathcal{M} , is the *marginal likelihood*, or *model evidence*. It is the probability that our observations where generated by our prior. It provides an objective for hyperparameter selection without the need for validation data.

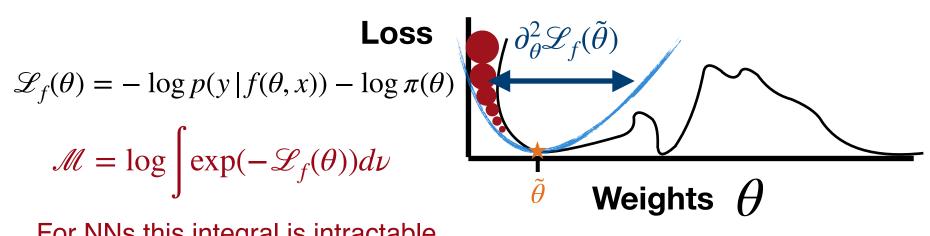
$$\mathcal{M} = \log p(y|x) = \log \int p(y|f(\theta, x))d\pi = \log \int \exp(-\mathscr{L}_f(\theta))d\nu$$



Preliminaries: automatic Occam's razor



Preliminaries: the Laplace approximation



For NNs this integral is intractable

Idea: Find a mode of \mathscr{L}_f : $\tilde{\theta}$ and perform 2-order Taylor expansion $\mathscr{G}_{f}(\theta) = \mathscr{L}_{f}(\tilde{\theta}) + ||\theta - \tilde{\theta}||^{2}_{\partial^{2}_{\theta}\mathscr{L}_{f}(\tilde{\theta})}$

By inspection, $\exp(-\mathscr{G}_{f,\tilde{\theta}}(\theta))$ is proportional to $\mathcal{N}(\tilde{\theta}, (\partial_{\theta}^2 \mathscr{L}_f(\tilde{\theta}))^{-1})$ where $\partial_{\theta}^{2} \mathscr{L}_{f}(\tilde{\theta})) = \partial_{\theta}^{2} \log p(y | f(\tilde{\theta}, x)) + \partial_{\theta}^{2} \log \pi(\tilde{\theta}) \qquad \pi(\theta) \to \mathcal{N}(\theta; 0, \Lambda^{-1})$

Issue: A lot of mass falls in low density region, leading to bad predictions

PAPER DISCUSSION:

IMPROVING PREDICTIONS OF BAYESIAN NEURAL NETWORKS VIA LOCAL LINEARIZATION