

# Getting a CLUE: A Method for Explaining Uncertainty Estimates

**ML-IRL Workshop at ICLR 2020** 

Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-Lobato

















### **Uncertainty in Predictive Models**

### Is there class overlap in our data?

### Have we observed enough data to make confident predictions?



**Quantify Uncertainty through Entropy (Classification) or Variance (Regression)** 



### **Motivation: Transparency in Deep Learning via Uncertainty**





# **Related Work: Uncertainty Sensitivity Analysis**

# Use gradients of predictive uncertainty w.r.t. inputs

$$I_{i,k} = \frac{1}{N_{\text{test}}} \sum_{n=1}^{N_{\text{test}}} \left| \frac{\partial f(\mathbf{x}_n^{\star})_k}{\partial x_{i,n}^{\star}} \right|$$



[Depeweg et. al., 2017]



# **Fixing Sensitivity Analysis**

### Sensitivity can produce meaningless explanations in high dimensions



### What if we could **constrain our explanations to the data manifold**?





# **Getting a CLUE**





# Getting a CLUE (cont.)

$$d_x(\mathbf{x}, \mathbf{x}_0) = \|\mathbf{x} - \mathbf{x}_0\|_1$$



#### Algorithm 1: CLUE

**Inputs:** original datapoint  $\mathbf{x}_0$ , distance function  $d(\mathbf{x}, \mathbf{x}_0)$ , BNN uncertainty estimator H, DGM decoder  $\mu_{\theta}(\cdot)$ , DGM encoder  $\mu_{\phi}(\cdot)$ 

- 1 Set initial value of  $\mathbf{z} = \mu_{\phi}(\mathbf{z}|\mathbf{x}_0)$ ;
- <sup>2</sup> while loss  $\mathcal{L}$  is not converged do

3 | Decode: 
$$\mathbf{x} = \mu_{\theta}(\mathbf{x}|\mathbf{z})$$

Use BNN to obtain  $H(\mathbf{y}|\mathbf{x})$ ;

$$\mathcal{L} = H(\mathbf{y}|\mathbf{x}) + d(\mathbf{x},\mathbf{x}_0);$$

6 Update  $\mathbf{z}$  with  $\nabla_{\mathbf{z}} \mathcal{L}$ ;

#### 7 end

8 Decode explanation:  $\mathbf{x}_{\text{CLUE}} = \mu_{\theta}(\mathbf{x}|\mathbf{z});$ Output: Counterfactual example  $\mathbf{x}_{\text{CLUE}}$ 



### **Showing CLUEs to Users**

 $\Delta \mathbf{x} = \mathbf{x}_{\text{CLUE}} - \mathbf{x}_0$ 



### **MNIST**





### **Comparing CLUE and Sensitivity**





# A Small User Study on COMPAS and LSAT

Here is a set of examples labeled with if the AI has high or low "noise uncertainty." For uncertain points, the corresponding CLUEs for 'noise' uncertainty are shown. Given this information, in subsequent questions, you will be asked to identify if the AI will present "noise uncertainty" on new points. Note that no CLUEs are shown with the questions. Feel free to come back to these context points when answering the questions.

|                 | Person 54 |    | CLUE  |
|-----------------|-----------|----|-------|
| Al is uncertain | True      | -> | False |
| LSAT            | 42.0      | -> | 36.8  |
| UGPA            | 2.6       | -> | 2.9   |
| race            | asian     |    | -     |
| sex             | female    |    | -     |
|                 |           |    |       |
|                 | Person 26 |    | CLUE  |
| Al is uncertain | True      | -> | False |
| LSAT            | 46.0      | -> | 37.9  |
| UGPA            | 31        |    | -     |
|                 | 0.1       |    |       |
| race            | black     | -> | white |
| race            | black     | -> | white |

|           | Person 13     |
|-----------|---------------|
| LSAT      | 33.0          |
| UGPA      | 3.1           |
| race      | mexican       |
| sex       | male          |
|           |               |
| e the Ali | will be 'nois |

Figure 6: A screenshot of a section from the second test variant for LSAT. The top box shows context examples, with CLUEs. The bottom box shows a question asked to the user.



# A Small User Study on COMPAS and LSAT

#### Is CLUE more helpful than just showing uncertainty estimates?

| Surveyed       | Variant | Sample<br>Size | LSAT<br>Ep. (6) | LSAT<br>Al. (7) | COMPAS<br>Ep. (6) | COMPAS<br>Al. (5) | Total (24) |
|----------------|---------|----------------|-----------------|-----------------|-------------------|-------------------|------------|
| Prolific       | Unc.    | 10             | 0.50            | 0.40            | 0.53              | 0.67              | 0.54       |
| Students       | Unc.    | 8              | 0.65            | 0.58            | 0.56              | 0.66              | 0.61       |
| Prolific       | CLUE    | 10             | 0.60            | 0.70            | 0.60              | 0.40              | 0.59       |
| Prolific (BS+) | CLUE    | 9              | 0.61            | 0.68            | 0.54              | 0.69              | 0.63       |
| Students       | CLUE    | 7              | 0.50            | 0.8             | 0.67              | 0.71              | 0.67       |

Users are able to predict if a model will be uncertain on new examples more accurately when using CLUE than when shown uncertainty estimates.



# A Small User Study on MNIST

### We modify the MNIST train set to introduce **O**ut **O**f **D**istribution uncertainty.

Accuracy

0.67

0.88

5

5



Uncertain: False

JNIVERSII



- Predictive Uncertainty makes ML systems safer and more reliable
- Sensitivity is not enough to explain Predictive Uncertainty in BNNs
- We introduce CLUE, a method to answer the question:
  "How should we change an input such that our model produces more certain predictions?"
- CLUE produces in-distribution explanations which trade-off the amount of change made to inputs and the amount of uncertainty explained away.
- A small user study finds that CLUEs help users understand the sources of a model's uncertainty.



### References

- [Antorán et. al., 2020] "Getting a CLUE: A Method for Explaining Uncertainty Estimates"
- [Depeweg et. al., 2017] "Sensitivity Analysis for Predictive Uncertainty in Bayesian Neural Networks"
- [Lundberg et al., 2017] "A Unified Approach to Interpreting Model Predictions"
- [Ribeiro et al., 2017] ""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
- [Sundararajan et al., 2017] "Axiomatic Attribution for Deep Networks"
- [Chang et al., 2017] "Explaining Image Classifiers by Counterfactual Generation"

