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Uncertainty in Predictive Models
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Quantify Uncertainty through Entropy (Classification) or Variance (Regression)

Have we observed enough data to make confident predictions?

Is there class overlap in our data?



Motivation: Transparency in Deep Learning via Uncertainty

x*
Accept a Certain 

Prediction

Reject an Uncertain Prediction ?

Get Explanation

ML Practitioner Workflow:

• LIME [Ribeiro et al., 2017] 

• SHAP [Lundberg et al., 2017] 

• Integrated Gradients 
[Sundararajan et al., 2017] 

• FIDO [Chang et al., 2017]



Related Work: Uncertainty Sensitivity Analysis

Use gradients of predictive 
uncertainty w.r.t. inputs

[Depeweg et. al., 2017]



Fixing Sensitivity Analysis 

What if we could constrain our explanations to the data manifold?

Sensitivity can produce meaningless explanations in high dimensions



Getting a CLUE

Use generative model as proxy for the data manifold:

Counterfactual Latent Uncertainty Explanations

“What is the smallest change we need 

to make to an input such that our model 

produces more certain predictions”



Getting a CLUE (cont.)



Showing CLUEs to Users

MNIST COMPAS



Comparing CLUE and Sensitivity

fm =
ΔH

Δx



A Small User Study on COMPAS and LSAT



A Small User Study on COMPAS and LSAT

Users are able to predict if a model will be uncertain on new examples more 
accurately when using CLUE than when shown uncertainty estimates.

Is CLUE more helpful than just showing uncertainty estimates?



A Small User Study on MNIST

We modify the MNIST train set to introduce Out Of Distribution uncertainty.

Method N. participants Accuracy

Unc. 5 0.67

CLUE 5 0.88



Summary

• Predictive Uncertainty makes ML systems safer and more reliable 

• Sensitivity is not enough to explain Predictive Uncertainty in BNNs 

• We introduce CLUE, a method to answer the question:                                      

“How should we change an input such that our model produces more 
certain predictions?” 

• CLUE produces in-distribution explanations which trade-off the amount of 

change made to inputs and the amount of uncertainty explained away. 

•  A small user study finds that CLUEs help users understand the sources of a 

model’s uncertainty. 
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