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Motivation: Bayesian Deep Learning around 2019

• Ensembles works for uncertainty estimation, everything else doesn’t

Ashukha et. al. ICLR 2020

Imagenet

Methods that improve over single model are ensembles



Motivation: Bayesian Deep Learning around 2019

• Ensembles works for uncertainty estimation, everything else doesn’t

Ashukha et. al. ICLR 2020

Ensemble “equivalent” score



Ensembles give poor joint predictions

Osband et. al. 2022.  Antorán, Padhy, et. al. 2023

ResNet18 + CIFAR100 Linearised Laplace approximation



Notation slide

Select a NN function  and place a prior 
distribution  over NN parameters. 

Define some likelihood function  to characterise 
the agreement of the NN function with the observations 

Posterior over parameters is given by 

Where

f : Θ × 𝒳 → 𝒴
π(θ)

p(y | f(θ, x))
(y, x)

p(θ |x, y) =
exp(−ℒf(θ))

Z

ℒf(θ) = − log p(y | f(θ, x)) − log π(θ)

data fit regulariser



Linearised Laplace (Bayesian methods for adaptive models, 1991)

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θ
data fit regulariser

θ̃

θ̃ ∈ argminθ ℒf(θ)

∂2
θℒf(θ̃)

p(θ |x, y) ≈ 𝒩(θ̃, (∂2
θℒf(θ̃))−1)



Linearisation as an approximation to the predictive

∫ f(θ, x*) 𝒩(θ; θ̃, (∂2
θℒf(θ̃))−1) dθ

Predictive distribution intractable:

Idea: linearise  f f(θ, x) ≈ f(θ̃, x) + J(x)(θ − θ̃)

J(x) = ∂θ f(θ̃, x)

≈

≈ 𝒩( f(θ̃, x*), J(∂2
θℒf(θ̃))−1JT)



Linearised Laplace uncertainty: examples

≈ 𝒩( f(θ̃, x*), J(∂2
θℒf(θ̃))−1JT)



What if we don’t linearise?

Neil D. Lawrence, PhD Thesis

∫ f(θ, x*) 𝒩(θ; θ̃, (∂2
θℒf(θ̃))−1) dθ

Predictive mean



What went wrong?

Issue: A lot of mass falls in low density region, leading to bad predictions

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θ
data fit regulariser

Leads to crazy posterior samples



Solution: view the linearisation as a model change

Khan et. al. 2019, Immer et. al. 2021

If we linearise  f f(θ, x) ≈ f(θ̃, x) + J(x)(θ − θ̃) ≐ h(θ, x)

We may consider y = h(θ, x) + ϵ ϵ ∼ 𝒩(0,B−1)
θ ∼ 𝒩(0,A−1)

and

H ≐ JTBJ + A
Known as the Generalised 
Gauss Newton approximation

≈ ∂2
θℒf(θ̃)

𝒩( f(θ̃, x), JH−1JT)

This linear model has the NN mean 
and linear-Gaussian error-bars

With true linear model posterior  θ |x, y ∼ 𝒩(θ̃, H−1)



Remaining issue: choosing a regulariser

λ = 100 λ = 10 λ = 5

λ = 1 λ = 0.1

A = λI
2 hidden layer, 2600 parameter, MLP with batchnorm



Mackay’s solution: Iterative algorithm

Weights

ℒf (θ, A1) = − log p(y | f(θ, x)) + ∥θ∥A1

θ
data fit regulariser

1. Minimise NN Loss

θ̃

2. Choose regulariser to maximise posterior volume

A2 = argmaxA −ℒ(θ̃, A) − logdet(H ) + C

≐ ℳ(A)

H

3. Retrain NN: i.e. goto 1.



Immer et. al. 2021’s online approach 

ℒf (θ) = − log p(y | f(θ, x)) + ∥θ∥A

1. Optimise NN loss for s few steps

−ℒ(θ, A) − logdet(H(θ)) + C

2. Single step of evidence update

at current weights

Interpretation of quadratic expansion around an optima of the loss is lost

Same procedure, with different derivation was also used by Friston 
et. al. 2006 for neuroimaging. They called it ‘Variational Laplace’.

3. Retrain NN: i.e. goto 1.



Some pathologies arise;  post-hoc setting 

λ = 100 λ = 10 λ = 5

λ = 1 λ = 0.1

Λ = λI
2 hidden layer, 2600 parameter, MLP with batchnorm

Largest ℳ



What is wrong with the Laplace model evidence?

log p(y | f(θ, x))

ℒf (θ) = − log p(y | f(θ, x)) + | |θ | |2
Λ

invariant not invariant

Antorán et. al. 2022

θ̃ ∈ argminθ ℒf(θ)



Limitation: scalability

H ∈ ℛ|Θ|×|Θ| H

Is intractable to store when  is large|Θ |

−ℒ(θ, A) − logdet(H(θ)) + C

𝒩( f(θ̃, x), JH−1JT)Predictive distribution

Evidence

Both 𝒪( |Θ |3 )



Different approaches to scalability

Sampling

• Unbiased & performance close to 
full-covariance Laplace 

• Best regulariser selection 

Last-Layer / Last-Layer + KFAC

• Avoids dealing with full  
• Best uncertainty 
• Fastest 
• Requires manual tuning

J(x)

fL−1(θ, x) = JL−1(x)

KFAC

• Overestimates curvature

[ ] ∑
(x,y)

ab ≈

(∑ a)(∑ b)

Subnetwork

• Selecting weights is hard 
• Requires manual tuning

[ ]



Infinite width NNs

As NN width goes to infinity, assuming  for properly scaled  θ ∼ 𝒩(0,A−1) A

de G. Matthews et. al, 2018  & Lee et. al. 2018 

f(θ, ⋅ ) ∼ GP(0, K( ⋅ , ⋅ ))

K( ⋅ , ⋅ ) = 𝔼θ[ f(θ, ⋅ )f(θ, ⋅ )] = JL−1( ⋅ )(JL−1( ⋅ ))T

Kernel is outer product of last layer Jacobians



Convergence to limiting behaviour can be fast 


