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Summary 

• We identify pathologies in the linearised Laplace 
model evidence when applied to modern NNs 

• We provide an adapted methodology that fixes 
these issues 
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• We validate recommendations on Transformers, LeNet-style CNNs, 
ResNets with and without normalisation layers, and U-Net auto encoders

• We validate at scale (21M param NN), where KFAC approximation is 
used for inference

• Discuss a number of implications and interesting special cases


