Adapting the Linearised Laplace Model Evidence for Modern Deep Learning

Javier Antorán, James Allingham, David Janz, Erik Daxberger, Riccardo Barbano, Eric Nalisnick, José Miguel Hernández-Lobato

Thank you to my collaborators!

James Allingham

David Janz

Erik Daxberger Riccardo Barbano

Eric Nalisnick

José Miguel Hernández-Lobato

Summary

- We identify pathologies in the linearised Laplace model evidence when applied to modern NNs
- We provide an adapted methodology that fixes these issues

1. Train a NN f to find a weight setting: $\tilde{\theta} \in \operatorname{argmin}_{\theta} L(\theta) + ||\theta||_{\Lambda}^2$

2. Taylor expand f and loss around $\tilde{\theta}$ to obtain a **conjugate** Gaussian-linear model:

- 2. Taylor expand f and loss around $\tilde{\theta}$ to obtain a **conjugate** Gaussian-linear model:
 - Closed form predictive uncertainty

- 2. Taylor expand f and loss around $\tilde{\theta}$ to obtain a **conjugate** Gaussian-linear model:
 - Closed form predictive uncertainty
 - Closed form model evidence

- 2. Taylor expand f and loss around $\tilde{\theta}$ to obtain a **conjugate** Gaussian-linear model:
 - Closed form predictive uncertainty
 - Closed form model evidence Choose prior precision hyperparameter Λ

 Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss

 Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss

 Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss

- Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss
- $oldsymbol{ ilde{ heta}}$ depends on exogenous factors & is not a mode of the linear model's loss

- Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss
- $m{ ilde{ heta}}$ depends on exogenous factors & is not a mode of the linear model's loss

$$\mathcal{M}_{\tilde{\theta}}(\Lambda) = -\frac{1}{2} \left[\|\tilde{\theta}\|_{\Lambda}^{2} + \log \det(\Lambda^{-1}H + I) \right] + C,$$

- Stochastic optimisation, early stopping or normalisation layers prevent us from identifying a mode of the loss
- ullet depends on exogenous factors & is not a mode of the linear model's loss

$$\mathcal{M}_{\tilde{\theta}}(\Lambda) = -\frac{1}{2} \left[\|\tilde{\theta}\|_{\Lambda}^{2} + \log \det(\Lambda^{-1}H + I) \right] + C,$$

Solution 1: find mode of linear model's loss

2d loss landscape for MLP with batchnorm

Solution 1: find mode of linear model's loss

Solution 1: use this mode in the evidence expression

$$\mathcal{M}_{\theta_{\star}}(\Lambda) = -\frac{1}{2} \left[\| \theta_{\star} \|_{\Lambda}^{2} + \log \det(\Lambda^{-1}H + I) \right] + C.$$

Solution 1: use this mode in the evidence expression

$$\mathcal{M}_{\theta_{\star}}(\Lambda) = -\frac{1}{2} \left[\|\theta_{\star}\|_{\Lambda}^{2} + \log \det(\Lambda^{-1}H + I) \right] + C.$$

Issue 2: Dependence on scale of linearisation point k

2d loss landscape for an MLP with batchnorm

Issue 2: Dependence on scale of linearisation point k

2d loss landscape for an MLP with batchnorm

k is arbitrary and does not affect NN predictions so it should not affect the predictive variance!

Issue 2: Dependence on scale of linearisation point k

2d loss landscape for an MLP with batchnorm

k is arbitrary and does not affect NN predictions so it should not affect the predictive variance!

However, in general, it does!

Solution 2: separately regularised normalised weight groups

$$||\theta||_{\Lambda}^{2} = \lambda_{0}||\theta^{(0)}||^{2} + \lambda_{1}||\theta^{(1)}||^{2} + \lambda_{2}||\theta^{(2)}||^{2} + \dots$$

Solution 2: separately regularised normalised weight groups

$$||\theta||_{\Lambda}^{2} = \lambda_{0}||\theta^{(0)}||^{2} + \lambda_{1}||\theta^{(1)}||^{2} + \lambda_{2}||\theta^{(2)}||^{2} + \dots$$

We validate recommendations on Transformers, LeNet-style CNNs,
 ResNets with and without normalisation layers, and U-Net auto encoders

- We validate recommendations on Transformers, LeNet-style CNNs,
 ResNets with and without normalisation layers, and U-Net auto encoders
- We validate at scale (21M param NN), where KFAC approximation is used for inference

- We validate recommendations on Transformers, LeNet-style CNNs,
 ResNets with and without normalisation layers, and U-Net auto encoders
- We validate at scale (21M param NN), where KFAC approximation is used for inference
- Discuss a number of implications and interesting special cases