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 We identify pathologies in the linearised Laplace
model evidence when applied to modern NNs

« We provide an adapted methodology that fixes
these issues
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Brief overview of linearised Laplace

1. Train a NN f to find a weight setting: 6 € argmin, L(0) + | | 0| |i
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Choose prior precision

+ Closed form model evidence ===pp-
hyperparameter A
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Issue 1: linearisation point 0 is not a mode of the loss

e Stochastic optimisation, early stopping or normalisation layers prevent us
from identifying a mode of the loss

o0 depends on exogenous factors & is not a mode of the linear model’s loss
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Solution 1: find mode of linear model’s loss
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Solution 1: use this mode in the evidence expression
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Issue 2: Dependence on scale of linearisation point k
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2d loss landscape for
an MLP with batchnorm
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k is arbitrary and does not affect NN predictions
so it should not affect the predictive variance!

-5 0 5 A* = Al

However, in general, it does!
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Solution 2: separately regularised normalised weight groups

1O11% =21 10O 17+ 4, 1OV + A, [ 1697 + ...

A=Al A = diag([A1, A2, A3])
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e We validate recommendations on Transformers, LeNet-style CNNs,
ResNets with and without normalisation layers, and U-Net auto encoders

e We validate at scale (21M param NN), where KFAC approximation is
used for inference

e Discuss a number of implications and interesting special cases



