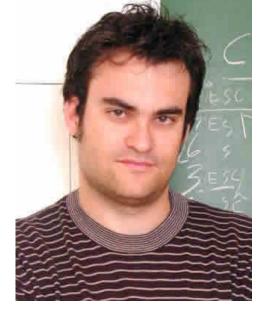
Disentangling and Learning Robust Representations with Natural Clustering

ICMLA 2019

Javier Antorán, Antonio Miguel

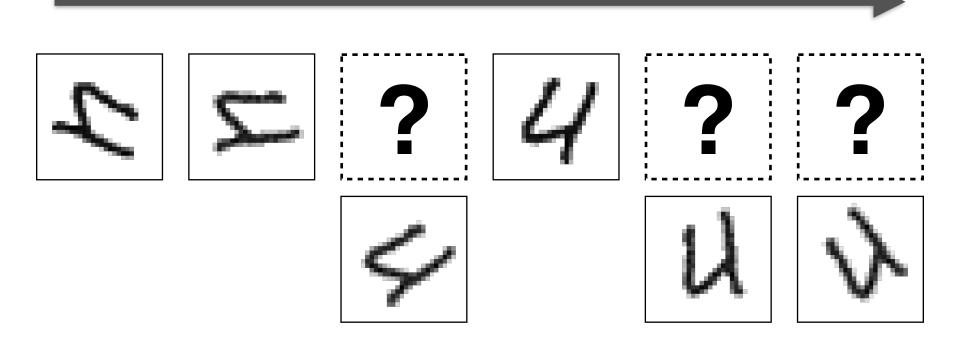
About Us

Javier Antorán ja666@cam.ac.uk
 Antonio Miguel amiguel@unizar.es



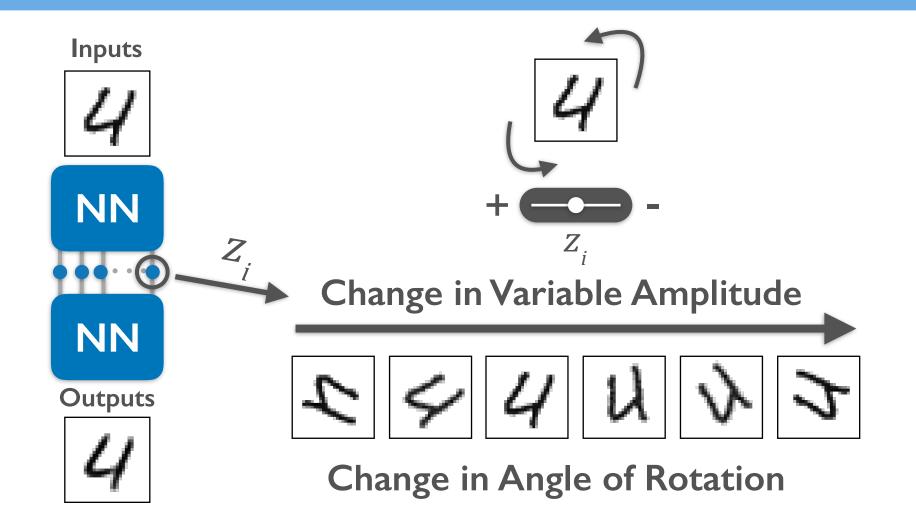
(Now at University of Cambridge)

Motivation: Disentangling High Level Concepts



• Can learn images individually or single digit and concept of rotation

Desired Behaviour



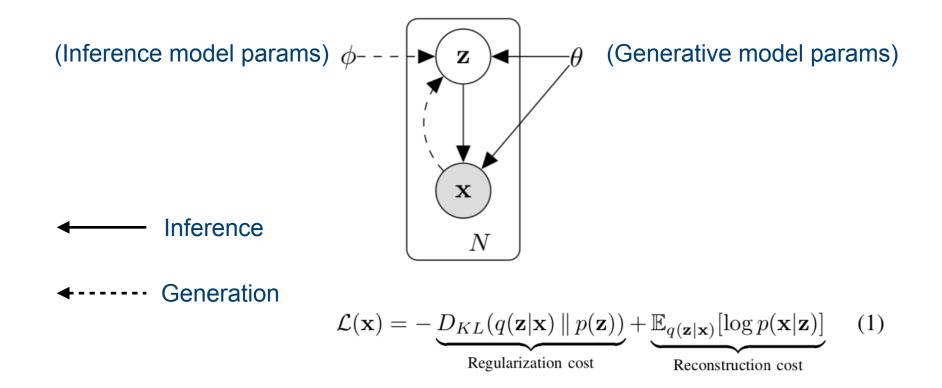
More Motivation: Applications

- High level analysis of complex data:
 - Single cell RNA sequencing
 - Pharmaceutical drug molecules

- High level editing of complex data:
 - Image / Audio manipulation

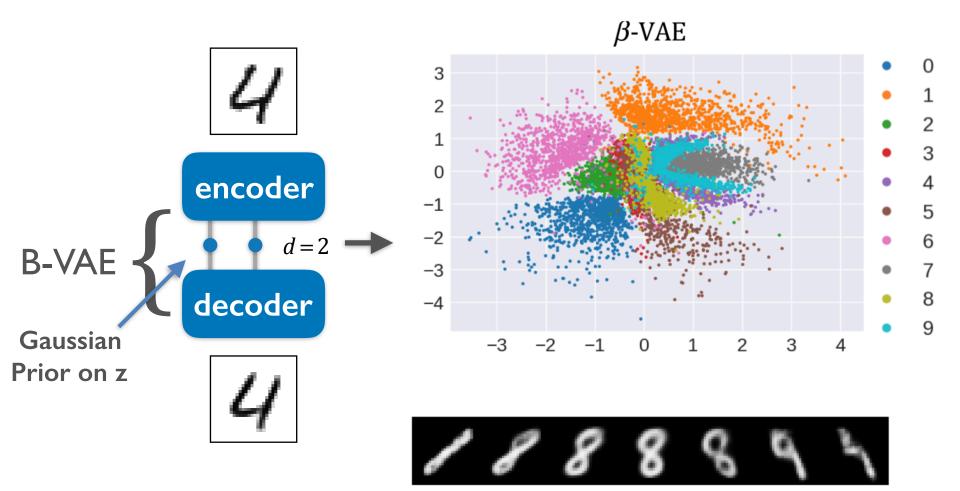
• Feature extraction for interpretable decision making

Variational Autoencoders

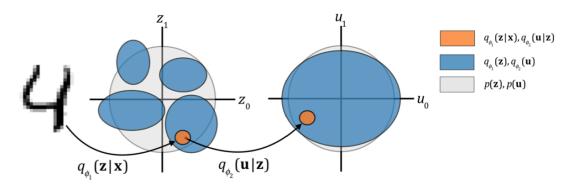


[Kingma and Welling, 2014]

Multimodality in VAE Latent Space



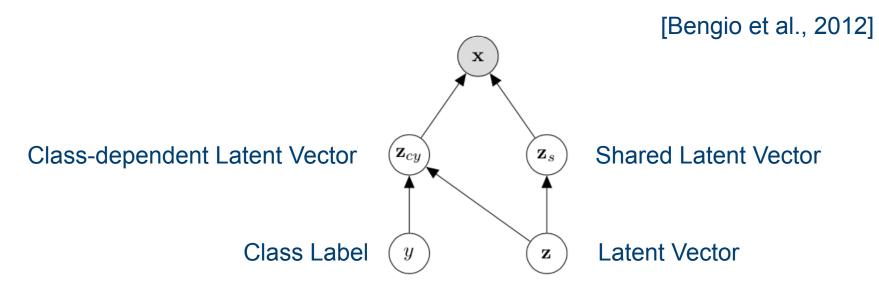
More VAE Underfitting: Ancestral Sampling



[Dai and Wipf, 2019]

Natural Clustering as an Inductive Bias

- Natural clustering: "different values of categorical variables such as object classes are associated with separate manifolds."
- "(...) the local variations on the manifold tend to preserve the value of a category, and a linear interpolation between examples of different classes in general involves going through a low density region."



A Lower Bound on the Joint Likelihood

$$\log p(\mathbf{x}, y) \geq \mathcal{L}(\mathbf{x}, y) = \mathbb{E}_{q(\mathbf{z}, \pi | \mathbf{x}, y)} [-\log q(\mathbf{z}, \pi | \mathbf{x}, y) + \log p(\mathbf{x}, y, \mathbf{z}, \pi)]$$

$$+ \log p(\mathbf{x}, y, \mathbf{z}, \pi)]$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

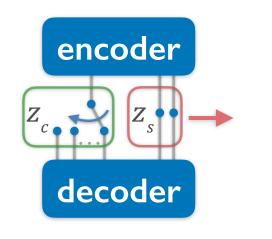
$$(2)$$

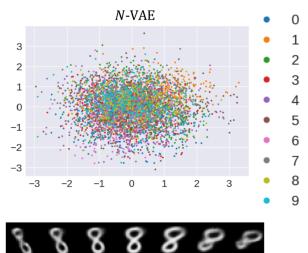
$$(2)$$

$$(2)$$

$$(2)$$

Shared Latent Space: MNIST

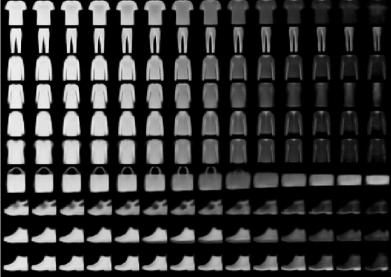


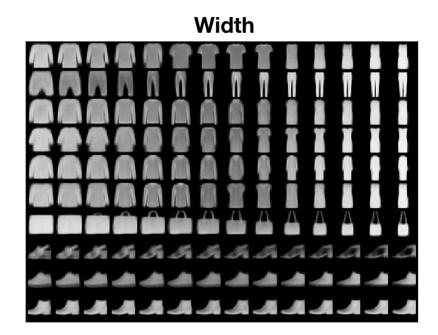


Azimuth	Stroke thickness	Width
0000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\ \ \ \ \ / / / / /		+ 1 1 1 1 1 3 3
1111222222222222	22222222222222	222222222222222
3333333333333333333333333	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444444 4444444 4	99944444444444444444444444444444444444
555555555555555555555555555555555555555	555555555555555555555555555555555555555	555555555555555555555555555555555555555
666666666666	6666666666666	666666666666
11177777777777	7777777777777777	111111177777777
888888888888888888	88888888888888888888888888888888888888	111188888888888888888888888888888888888
9999999999999	9999999 999999999	1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Shared Latent Space: FMNIST

Color Intensity





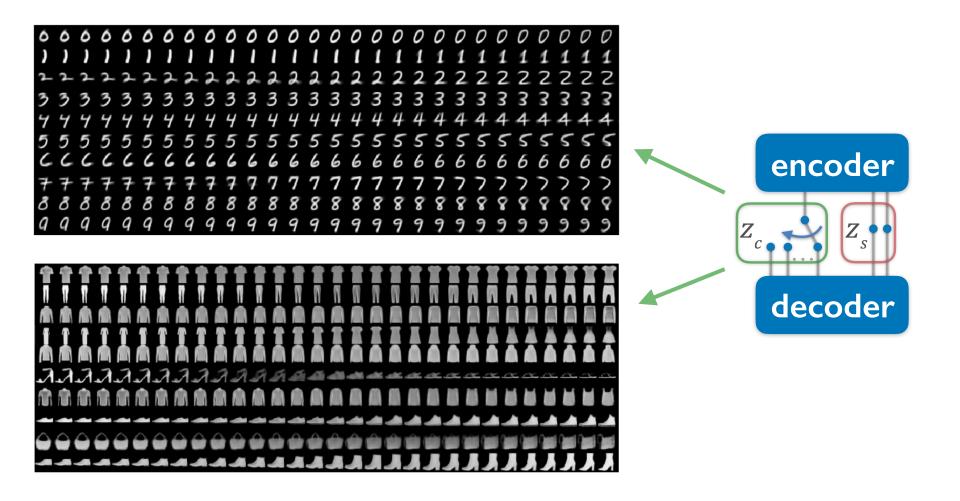
Shared Latent Space: Yale Ext B

Illumination azimuth

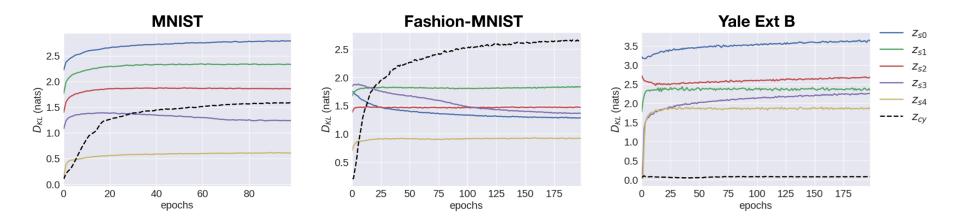
Illumination elevation

<u> 한 한 한 한 한</u>	J. J.	de de	T T	江江
	山山			
中中中市市				
ચું ચું ચું ચું ચું	A. A.	9 <u>76</u> 9 <u>7</u> 6		習習習
<u> </u>	J. J.	J. J.	T.T.	T. T. L

Class-dependent Factors of Variability



Detecting Class-dependent Factors



KL term acts as a feature detector

$$\mathcal{L}_{\beta_c} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|y, \mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}_s|\mathbf{x}) \parallel p(\mathbf{z})) - \beta_c D_{KL}(q_{\phi}(\mathbf{z}_c|\mathbf{x}) \parallel p(\mathbf{z})) + \log(q_{\phi}(y|\mathbf{x}))$$
(7)

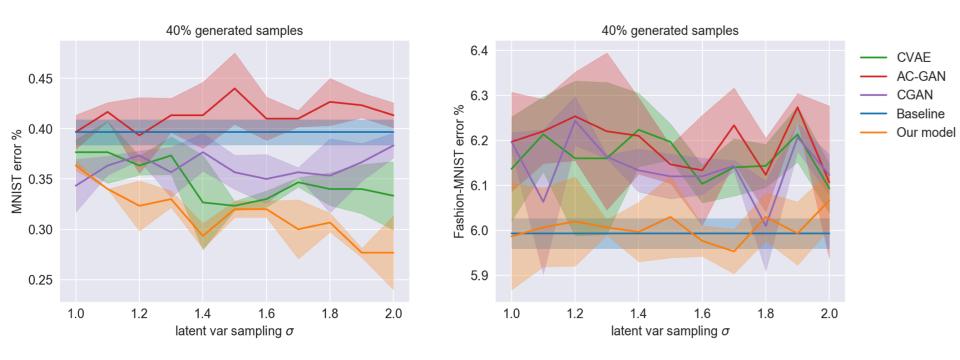
Ancestral Sampling from N-VAE

N-VAE samples with $\sigma = 1$

0308/047 C: N-VAE samples with $\sigma = 1.4$

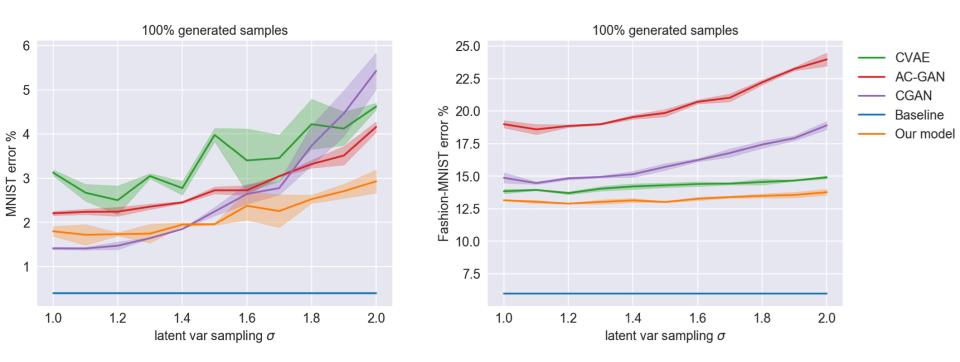
Training Discriminative Models with Artificial Data!

• 40% Artificial Data



Training Discriminative Models with Artificial Data!

• 100% Artificial Data



- The Natural Clustering inductive bias allows us to explain data better.
- N-VAE successfully disentangles latent factors in scenarios with class-related multimodality.
- N-VAE can be used for detecting and disentangling class-dependent factors of variability which are usually ignored by generative models.
- N-VAE's aggregate posterior over latent variables better matches the prior, recovering the VAE's ancestral sampling capabilities.
- The previous two characteristics result in a more expressive generative model.