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Motivation: Disentangling High Level Concepts
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• Can learn images individually or single digit and concept of rotation
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More Motivation: Applications

• High level analysis of complex data: 

• Single cell RNA sequencing 

• Pharmaceutical drug molecules  

• High level editing of complex data: 

• Image / Audio manipulation  

• Feature extraction for interpretable decision making



Variational Autoencoders

[Kingma and Welling, 2014]
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More VAE Underfitting: Ancestral Sampling

[Dai and Wipf, 2019]



Natural Clustering as an Inductive Bias
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• Natural clustering: “different values of categorical variables 
such as object classes are associated with separate manifolds.”  

• “(…) the local variations on the manifold tend to preserve the value of a 
category, and a linear interpolation between examples of different classes 
in general involves going through a low density region.”

[Bengio et al., 2012]



A Lower Bound on the Joint Likelihood
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Shared Latent Space: MNIST
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Shared Latent Space: FMNIST



Shared Latent Space: Yale Ext B



Class-dependent Factors of Variability
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Detecting Class-dependent Factors

• KL term acts as a feature detector



Ancestral Sampling from N-VAE

N-VAE samples with = 1σ



Training Discriminative Models with Artificial Data!

• 40% Artificial Data



Training Discriminative Models with Artificial Data!

• 100% Artificial Data



Summary

• The Natural Clustering inductive bias allows us to explain data 
better. 

• N-VAE successfully disentangles latent factors in scenarios with 
class-related multimodality.  

• N-VAE can be used for detecting and disentangling class-dependent 
factors of variability which are usually ignored by generative models.  

• N-VAE’s aggregate posterior over latent variables better matches the 
prior, recovering the VAE’s ancestral sampling capabilities. 

• The previous two characteristics result in a more expressive 
generative model.


