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Talk Outline

1. Whirlwind introduction to Gaussian Processes 

2. The computational cost of inference and popular approximations

3. Sampling from GPs with SGD

4. Analysis of what SGD does in this setting 

5. Experiments: regression and Bayesian optimisation 



I must warn you

This talk applies the linear model inference of Antoran, Padhy, et al 2022 to GPs. The content 


•  Is of limited novelty (R1)


•  Of minor interest (R2)


• Is just a combination of some non-groundbreaking clever tricks (AC)




Gaussian Process 

• Flexible model class in which exact 
inference is tractable!

• Provides uncertainty estimates together 
with predictions

• State of the art tool for sequential 
decision making 



Gaussian Process  — the Bayesian model 

• Bayesian generative model:   with  

• The function   is assumed to be sampled from a GP.       

• We take the mean function to be  and  is the covariance kernel.

•  We evaluate  at the train data to obtain the Kernel matrix 

• We assume Gaussian observation noise  (assume )

y = f(x) + ϵ y ∈ RN

f : X → R f ∼ GP(μ, k)

μ( ⋅ ) = 0 k( ⋅ , ⋅′￼)

k Kxx = [k(xi, xj)]i, j=0,...,N

ϵ ∼ N(0, Σ) Σ = σ2IN



Gaussian Process  — posterior inference 

• Traditional formulation: The posterior is a the GP   with

 

• Pathwise formulation: Posterior functions are given by updating prior samples 
 as

f |y ∼ GP(μf|y kf|y)

μf∣y( ⋅ ) = K(⋅)x (Kxx + Σ)−1 y kf∣y ( ⋅ , ⋅′￼) = K(⋅,⋅′￼) − K(⋅)x (Kxx + Σ)−1 Kx( ⋅′￼)

f ∼ GP(μ, k)

( f ∣ y)( ⋅ ) = f( ⋅ ) + K(⋅)x (Kxx + Σ)−1(y − f(x) − ε) ε ∼ N(0, Σ) f ∼ GP(μ, k)



Cubic Computational Cost

μf∣y( ⋅ ) = K(⋅)x (Kxx + Σ)−1 y kf∣y ( ⋅ , ⋅′￼) = K(⋅,⋅′￼) − K(⋅)x (Kxx + Σ)−1 Kx( ⋅′￼)

( f ∣ y)( ⋅ ) = f( ⋅ ) + K(⋅)x (Kxx + Σ)−1(y − f(x) − ε) ε ∼ N(0, Σ) f ∼ GP(μ, k)

If we want to get anything done, we need to invert or solve against  which has cost Kxx + Σ ∈ RN×N O(N3)

On a A100 GPU largest problem we can deal with is N = 50k



Variational Inference (Titsias 2009, Hensman et. al. 2013)

• Idea: Data can be summarised by a set of “Inducing points”

• Cost is  for  the number of inducing pointsO(M3) M

Large Domain AsymptoticsInfill Asymptotics



Conjugate Gradients  (Gibbs & Mackay, 1996, Wang et. al. 2019)

• CG is the most popular approach to solving linear systems 

• Iterative method, each step requires a matrix multiplication with   (cost ) 

• Algorithm converges in at most N steps but in practise for some tolerance 

(K + Σ)−1b

Kxx + Σ ∈ RN×N O(N2)

ϵ

O ( cond(K + Σ) log
cond(K + Σ)∥b∥

ϵ ) cond(K + Σ)) =
λmax(K + Σ)
λmin(K + Σ)



Conjugate Gradients — performance depends on conditioning

•Infill Asymptotics: Redundant data, Kernel matrix is very ill-conditioned 

•Large Domain Asymptotics: Data is non-redundant, Kernel matrix better conditioned

Infill Asymptotics Large Domain Asymptotics



SAMPLING WITH SGD



Sampling as optimisation of representer weights

v* = arg min
v∈ℝN

N

∑
i=1

(yi − Kxixv)
2

Σii
+ ∥v∥2

Kxx

μf∣y( ⋅ ) = K(⋅)x (Kxx + Σ)−1 y

v⋆



Minibatch estimation and Fourier features

• Data fit term: Making predictions  is O(N) and we have N training points  naively

• Can use minibatch estimator to reduce to 

• Regulariser term :  Naively  to construct and collapse  

• We use an unbiased random Fourier feature approximation with L features. Since L is arbitrary, 
we have 

K(⋅)xv →O(N2)

O(N)

∥v∥2
Kxx

O(N2) Kxx

O(N)

v* = arg min
v∈ℝN

N

∑
i=1

(yi − Kxixv)
2

Σii
+ ∥v∥2

Kxx

N
D

D

∑
i

(yi − Kxixv)
2

Σii
+

L

∑
ℓ=1

(vTϕℓ(x))2

*We can do O(M) with inducing points— not included in slide



This extends to posterior samples in pathwise form as

( f ∣ y)( ⋅ ) = K(⋅)x (Kxx + Σ)−1 y

mean μf|y(⋅)

+ f( ⋅ ) − K(⋅)x (Kxx + Σ)−1( f(x) + ε)

0-mean posterior sample

ε ∼ N(0, Σ) f ∼ GP(μ, k)



What does SGD do in practise?



Is SGD converging to the right solution?

In representer weight space: NO In function space: YES ????

Elevators dataset ( 16k points)≈



What does SGD do in practise? — cont. 



What is going on here? — far-away region

( f ∣ y)( ⋅ ) = f( ⋅ ) + K(⋅)x (Kxx + Σ)−1 y

→0

+ −K(⋅)x (Kxx + Σ)−1( f(x) + ε)

→0

As we move far away from the train data:  and K(⋅),x → 0

So we revert to the prior!



What is going on here? — spectral basis functions

(Kxx + Σ) = UΛUT u(i)( ⋅ ) =
N

∑
j=1

Uji

λi
k (xj, ⋅ )



What is going on here? — interpolation region 



Finding the approximation error

Error is not where the data is

Error is in the nearby-extrapolation region



Resistance to ill-conditioning — no need for adding extra noise

Elevators dataset ( 16k points)≈



Experiments: regression on datasets of increasing size

• Advantage of  vs  starts to kick in around 50k training pointsO(N) O(N2 log cond)



Inducing point variant of SGD

• Inducing points take us from O(N) to O(M) and we are free to 
choose number of inducing points M and their location



Bayesian Optimisation: Thompson Sampling

Setup: 


• True function is a GP prior samples and our models are well-specified


• We consider 5 length scales and 10 seeds for each lenthscale


• We start with 50k uniformly sampled points and we collect 1000 points for 30 steps 



QUESTIONS?


