

Getting a CLUE: A Method for Explaining Uncertainty Estimates

Showcase Talk, CCAIM 2021

Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-Lobato

Javier Antorán ja666@cam.ac.uk

Umang Bhatt usb20@cam.ac.uk **Tameem Adel**

Adrian Weller tah47@cam.ac.uk aw665@cam.ac.uk

José Miguel Hernández-Lobato jmh233@cam.ac.uk

Computational and Biological Learning Lab

Data driven decision making with reliable uncertainty

Motivation: More Transparency in Deep Learning via Uncertainty

Are Uncertainty Aware Systems Interpretable?

Polyp segmentation:

(c) EFCN-8 prediction

(e) EFCN-8 uncertainty

MRI brain tumour segmentation:

Sagar, 2020

Opening the Black Box with Counterfactual Explanations

Input (99.9%)

Chang et. al., 2018

Getting a CLUE

Counterfactual Latent Uncertainty Explanations

"What is the **smallest change** we need to make to an input such that our model produces more **certain predictions**"

Showing CLUEs to Users

(a) MNIST (b) LSAT

Figure 5: Example image and tabular CLUEs.

User Study: Setup

Human Simulability: Users are shown context examples and are tasked with predicting model behaviour on new datapoint.

User Study: Results

Tasks:

- COMPAS (Criminal Recidivism Prediction, 7 dim)
- LAST (Academic Performance Prediction, 4 dim)

Users:

- University Students with ML experience
- 10 Users per approach (total: 40), 10 Questions per Dataset

Method	N. participants	Accuracy (%)
Random	10	61.67
Sensitivity	10	52.78
Human	10	62.22
CLUE	10	82.22

Summary

- Predictive Uncertainty makes ML systems safer and more reliable
- We introduce CLUE, a method to answer the question: "How should we change an input such that our model produces more certain predictions?"
- Our user study finds that CLUEs help users understand the sources of a model's uncertainty.
- Future work will apply CLUE to more diverse and interesting data

Read The Full Paper at: arxiv.org/abs/2006.06848

