Aalto University and ELLIS unit Helsinki Seminar on Advances in Probabilistic ML

March 17th, 2022

Bayesian Deep Learning with Linearised Neural Networks

Javier Antoran

Talk outline

1. Preliminaries: probabilistic inference in neural networks
and the linearised Laplace method

2. Methodological advancement: adapting the linearised
Laplace model evidence for modern deep learning

3. Case study: applying linearised Laplace to design a
prior for x-ray image tomographic reconstruction

Preliminaries

Preliminaries: open problems in deep learning

Overconfidence

Training on CIFAR10 — Test on SVHN

()

Dog (100%) Bird (100%) Airplane (100%)

https://vitalab.github.io/article/2019/07/11/overconfident.html

Model Selection
1 Hidden Layer 5 Hidden Layer 20 Hidden Layer

100
75
{ 50
\7 \ | 71 25 { | “ ul ' i ‘
VAL) ! | ‘
-25 {] 1 ‘ p
-5.0
75

Preliminaries: probabilistic inference in NNs

1. Place a prior distribution 7(€) over NN parameters.

2. Define some likelihood function p(y | f(60, x)) to characterise the
agreement of the NN function (6, -) with the observations (y, x)

3. Update the weight distribution using Bayes’ rule

_ PO L0, 0))7(6)

6 € argmax, log p(y | f(0, x)) + log 7(9) p@|x,y)
p(y|x)

data fit regulariser

Preliminaries: uncertainty estimation

Loss
Z(0) = — log p(y| f(60,x)) — log n(0)
data fit regulariser
Weights @
2 . + 2r ?,f’\\’/—l;,(\\:\ N e 2
|- /\ // \ FN /:1/\/\ NS T
0 * + . :_::- 0'\\/7\)(\/// ‘\ //:;L({/// <‘\\\ // \ é.- 0
- W\ ; ./
-2r + =2t \ti\\\// 2t
54321012345678 910 5432101234567 8¢ 5432101234567 8¢
(xt‘ ut) (Xt' ut) (xt' ut)

1
= — 0,-), 0 ~pld
p@|y,x) —_ exp(=Z(@) f(0,-), p@]|y,x)

Preliminaries: model selection

1
L0 = ~10gp(y|(60.9) ~108.7(0) p(O].3) =~ eXP(~L(0))

The normalisation constant, ./Z, is the marginal likelihood, or model evidence.
It is the probability that our observations where generated by our prior. It provides
an objective for hyperparameter selection without the need for validation data.

M =logp(y|x) =log Jp(ylf(é’, x)dr = log[eXp(—gf(G))dv

prior too narrow

just right prior too wide

] 1.0 1 -]
likelihood —— likelihood [\ 081 __ likelihood
prior

0.8 prior ‘;‘ \“ prior
0.61 mmm M =-4.13

m M =-552 0.61 mmm M =-544

Preliminaries: automatic Occam’s razor

A Overfit, M = -53.61

P(YIM)

Y 1 0 1 2

\ just right" 1
J \ too complex
. - 2

All possible data sets

Underfit, M = -67.76 Optimised, M = -36.06

Preliminaries: the Laplace approximation

Loss g
L) = — log ply| f(6,x)) — log n(6) [

MM = log[exp(—gf(ﬁ))dv

7 Weights @

For NNs this integral is intractable

Idea: Find a mode of Sff: ¢ and perform 2-order Taylor expansion
N A2
?f(e) — gf(e) + | |9 _ Hl |053f(é)

By inspection, exp(— ?ﬁg(Q)) is proportional to (6, (agfff(é))_l) where

05 1(0) = dglog p(y|f(0, %) + dzlogn(@) n(0) = H(B; 0,A7")

Issue: A lot of mass falls in low density region, leading to bad predictions

Preliminaries: the linearised Laplace method

e A Gaussian can be a very poor approximation to the NN posterior

e Butitis a very good posterior for a linear model (in some cases exact)

° h(B,-)=f(0,)+ 0pf(6, -)6 —6)

& \ Affine in 6

Jacobian acts as basis expansion
o New loss Z,(0) is convexand & €,(0) = Z,(0) + | |0 — 0] |323h(5,)
— — — 0

® This conjugate Gaussian-linear model has:

® Feature expansion J(-) = 9, f(é, -), Design matrix H = 023 h(é)

e Closed form predictive posterior and marginal likelihood
[Mackay, 1992]

Some results: image classification under distribution shift

Test LL

corruption

Model: Baselines:
ResNet-18 with 11M weights

e Diagonal Laplace
Inference: e MC Dropout (Gal 2016)

Lin Laplace Subnetwork
(Daxberger et. al. 2021)

“Bayesian Deep Learning via Subnetwork Inference”

(Lakshminarayanan 2017)
e SWAG (Maddox 2019)

Some questions one might have

e But wait, how did you find a mode of the NN loss to expand around?

QNe didn’t, we used SGD and hoped for the best

e How did you deal with modern architecture elements, like batchnorm?

ONe used them and hoped for the best

e How did you tune hyperparameters?

o Cross validation — in fact, the choice of Gaussian prior precision /A makes a large
difference in performance; it controls the size of the errorbars

e \What about the model evidence?

® We could not get it to work, it consistently choose prior precisions that overestimated
uncertainty

— Why doesn’t it work?

Problem illustration

A=A

2 hidden layer, 2600 parameter, MLP with batchnorm

A =100 A =10 A=5

Largest ./ ;

Adapting the linearised Laplace
method for modern deep learning

On the difficulty of finding a mode of the loss

e In 1992 Mackay did not use stochastic optimisation, early stopping or
normalisation layers

e INn modern settings 0 is not a stationary point of Sff

o ,.Z{0)#0 = 0,Z,(0) #0

Laplace approximations

1.0 1

My(A) = ffo%‘

_1 ~ _1
—-(I1011} +logdet(A™'H + 1)) +C

Wrong! Not that wrong?

The basis function linear model has a well defined optima

o We know that for any regularisation strength A, £, ,(6) is convex

e We know that for any linearisation point 8, ./ o(\\) is concave

— We can find joint stationary point (0,, A,)

0, € argmin Ly, A, () and A, € argmax My, (A).
A

Recommendation 1: Keep 0 as linearisation point but

My, (N) =

—

-1 . ~1
7(165 + logdet(A™'H + 1)) + C 7(16, | |5 + logdet(A™'H + 1)) + C

Following recommendation 1 improves errorbars

A set with M A set with M«
4 - 4
- .
o _M _M
I, -
_4 - -
| | | I | I
-1 0 1 2 -1 0 1 2

Could we find 0 = @, by optimising our network better?

BatchNorm FixUp
J ~ 1.0
o 40 [\w -~ 05 Trn Loss
—~~
/T 35 - N 600 — ValLoss | 0.8
X — 0.4
S 3 A
= - 03 - 06
—~ 25 | - W2 400 7 >
< A - 0.2 - 04 2
= 200 H
~ - 0.1 | - 02
=== = = == = S SN 0.0 0 - _— o —mae oo k0.0
| T T | T T T T | |
1 60 120 180 240 1 60 120 180 240
NN training epochs

Figure 5. Wasserstein divergence between distributions obtained
when employing M; and My, as NN training progresses. The
vertical black line indicates optimal early stopping.

What about the choice of Hessian evaluation point?

Laplace approximations

— 1.0 1
Mo, (N) =
—1 , . 0.81
—(|10, 1] +logdet(A™H + 1))+ C @
2 — S 0.6
Not that wrong? g 04
In fact, correct for regression! 0.2
0.25 - é* é
Hessian 6
0.20]
A

0.15 -
ResNet image classification task:

most gains come from setting correct
posterior mean in

0.10

Test NLL

0.05 A

Studying the effect of normalisation layers

Normalised networks:

Let @ = @' + 0" with 8’ having zero entries in the place of weights to
which normalisation is applied and the opposite is true for 8”, then

fO+0",)=FO +kO",-) for k>0

Definition applies to:
« Batch norm
« Layer norm
* Group norm
* Normalisation-
free ResNets

The MAP solution does not exist for normalised networks

Normalisation introduces scale invariance 6 logp(y|f(9, X)) gf (9)
@+,)=f6O0+k0",-) for k>0 4 i '
.
) = 0 kK
ZH0) = logp(y | f@,)+ 1013 5 ;
invariant not invariant -4 i
1 —6 T : T
= Z0+0")> L0 +-0") -5 0 5 s 0 5
log p(y | h(6, x)) Z,(0)

Linearisation point 0 % can never
be a mode of the posterior since
the posterior has no modes .

I
b
1
¥

Z1(0) has a well defined mode 0,
— apply recommendation 1

Dependence on scale of linearisation point £

Z ()

-5 0 5

Proposition 3. For normalised neural networks, using a
regulariser of the form ||0'|%, + ||6”||A with A’ and A"
parametrised independently and chosen according to rec-
ommendation 1, the predictive posterior h(0,-), 0 ~ Q

induced by a linearisation point 0’ + k0" is independent of
the choice of k > 0.

However, in general, it does! /) |

Recommendation 2: learn an independent regulariser for
each normalised group of weights 8%, i.e.

logz(0) & '] [0/ 1>+) A [0]|

k does not affect NN predictions so it should
not affect the predictive variance!

A=Al
- .’ e k=1
/], A BN

A* = diag([A1, A2, A3])

4 — k=1
k=2

Systematic analysis (46k param models)

Table 1. Validation of recommendations across architectures. All results are reported as negative log-likelihoods (lower is better). In each
column, the best performing method is bolded. For each M, if single or multiple A optimisation performs better it is underlined.

T-FORMER CNN RESNET PRE-RESNET FIxXUP U-NET
M single A 0.162 002 0.025 0000 0.017 +0000 0.017 + 0.000 0.055 0006 —
O multiple As | 0162 002 0.025 0000 0.016 0001 0.016 - 0.000 0.061 0005 -2.240 + 0027 |
M single A 0.310 + o060 0.253 +0001 0.252 +000s 0.220 + 0.004 0.153 +0021 —
9 multiple As 0162 ~o0022 0.205 +0002 0.236 <0005 0.239 + 0.004 0.200 +o0018 -1.703 +0.023

Recommendation 1 + Recommendation 2 is best in all cases

* Fixup is a non-scale invariant alternative to normalisation layers so
recommendation 2 does not apply

Validation on ResNet-50 (23M parameters)

Table 2. Test negative log-likelihoods for ResNet-50 on CIFAR10.
BATCHNORM FIXUP

M single A -0.773 -+ 0.004 -0.744 + 0.000
O simple | multiple \s -0.778 -+ 0.003 -0.801 - 0.000]
M single \ -0.645 -+ 0.005 -0.563 +0.002
Ol multiple As -0.639 -+ 0.000 -0.641 + 0001
single A -0.269 -+ 0.004 -0.387 +0.000
M

multiple As -0.271 -+ 0.004 -0.437 -+ 0.000

Recommendation 1 + Recommendation 2 is best in all cases

We employ standard KFAC approximation for scalable Hessian computations

Wrapping up: treat your NNs as kernels!

e Linearised Laplace should not be naively applied to modern NNs.

e Every linearisation point 0 defines a tangent linear model. Linearised
Laplace uses this model to provide errorbars. Choosing
hyperparameters using this model’s evidence avoids pathologies.

® |s the tangent linear model a good surrogate for the NN?

e For NNs with linear dense output Iayers,f(é, +) isin the linear span
of the Jacobian basis expansion J(-) = d,f(0, -)

® Furthermore, for normalised networks with dense output layers:

e Linearisation simplifies to (6, -) = J(-)08, 6 ~ A(0, A) and thus
induces a GP prior f ~ GP(0, JA~'JT)

Case study: probabilistic inference
with linearised neural networks for
X-ray image reconstruction

A brief primer on inverse problems

e Consider the setting ys =Ax+n, n~ 4(0, 021) and

® We observe ys € R% and are tasked with recovering x € IR{dx, and
d.>d,

CROSS VIEW

X-ray source

Detector cells

e Clearly the problem is ill posed
e Traditionally, x is estimated through regularised reconstruction

e Can we design a Bayesian prior p(x) to solve this task?

The “deep image prior” for inverse problems

e Standard solution: “Deep image prior” f (9) L
. 2 =
argmin, (ys —Af(0))° + A TV(£(60)) ‘ f
data fit classical - -
regulariser ! 1
-> -,
4 . 1

Can be interpreted as a MAP objective given a ” ' | -

prior that constrains reconstructions to be the ‘_’ _’| _}*

output of a U-net and have low TV f A

—

==) 1x1 conv + group norm + leaky ReLU
==) Dbilinear upsampling
==p 3x3 conv with stride 2 + group norm + leaky ReLU
==) 3x3 conv + group norm + leaky ReLU
1x1 conv
==) layer norm + 2x (3x3 conv + group norm + leaky ReLU)

From regularised reconstruction to Bayesian inference

e Can build unnormalised prior p(f) o exp(—ATV(f))
e Normalising constant does not admit closed form
e Hessian is 0 almost everywhere — can’t use Laplace

e Idea: build surrogate Gaussian prior with a covariance kernel that
enforces TV smoothness

f~NQO.K(A)), A~ pA)=EXp(TV(f);4)

oTV(f)
oA\

TV-PredCP Fact. Gauss.

Building a probabilistic deep image prior

1.Train U-net with standard objective: (ys — A £(0))* + TV(f(0))

2.Linearise around some acceptable parameter setting 0

3.Build Bayesian hierarchical model

oTV(f)
774\

vs~ NASf, 6,1, f~ N O, JATIT), A~ p(A) = EXp(TV(f); 1)

4.0ptimise hyperparameters with marginal likelihood

5.Make predictions (cheap because dy < d,,dy)

Optimising hyperparameters with the marginal likelihood

Automatic Relevance Determination

1.0 1
0.8

Og1— Down
1.0
05 -
0.0
1 1
2
o U
iteration 0,6 p
1.0
05 -
\
~
0.0
1 1
0 1000
iteration

2 .
O1w1 90 — Skip

= MLL

== TV-MAP

1.0 1
0.8
0.6 -
04 -
0.2 -

0.0

2

2 2

(79,2 — Down 0'9’3 — Down (79,4 — Down 0'9’5 — Down
1.0 1.0 1.0 1.0
0.5 - 0.5 - 0.5 - 0.5
\ \§
3 N NG
0.0 H 0.0 - 0.0
1 1 1 1 1 1
2 2 2
g7 — UP 0 — UP 09 — UP
1.0 1.0 1.0
0.5 - 0.5 - 0.5 -
\ \¥
~ 3 ™
0.0 H 0.0 - 0.0
1 1 1 1 1 1
0 1000 0 1000 0 1000
iteration iteration iteration
2

O1w101 — SKip

0 500 1000
iteration

1500

0

500 1000 1500

iteration

I
’ m'\,"

T T
500 1000 0

iteration

500 1000 1500
iteration

Bayes DIP (TV-MAP)

DIP-MCDO

PSNR: 23.490 dB; SSIM: 0.7339

|x — x

|

std-dev

log-likelihood: 0.8699

Calibration comparison

marginal std-dev calibration: Q-Q

102 L
. U700 |x —x*|
. 700 std-dev - Bayes DIP
10! 4L, -
: I'I__ r—
Y
100 e
_E‘ 4y, My e Bayes DIP
= L DIP-MCDO
< 10—1 _l, —I.I
"QCS) Lh T T T
e -25 00 2.5
=l . . .
102 i prediction quantiles
T4
., S5 x— x|
1073 i
R, std-dev — DIP-MCDO
] '. il B il
T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.0

Lin Laplace Dropout

Take-home message 2: use deep learning to build specialised kernels

® We can obtain very powerful task-specific kernels by
training a NN to solve a task and then linearising it.

® Once the network is trained, we the tangent linear model
f~ GP(0, JA~'JT) provides us with uncertainty
estimates and a model selection objective.

Thank you to all my collaborators!

James Allingham David Janz Erik Daxberger Riccardo Barbano

José Miguel

Johannes Leuschner Bangti Jin Eric Nalisnick Hernandez-Lobato

Papers discussed

® Preliminaries: Daxberger et. al. “Bayesian Deep Learning via
Subnetwork Inference”, ICML 2021

e Antoran et. al. “Adapting the Linearised Laplace Model Evidence for
Modern Deep Learning”, will be released in next couple of weeks

e Antoran et. al. “A Probabilistic Deep Image Prior for Computational
Tomography”, https://arxiv.org/pdf/2203.00479.pdf

