
Bayesian Deep Learning with Linearised Neural Networks

Javier Antorán

Aalto University and ELLIS unit Helsinki Seminar on Advances in Probabilistic ML

March 17th, 2022

Talk outline

1. Preliminaries: probabilistic inference in neural networks
and the linearised Laplace method

2. Methodological advancement: adapting the linearised
Laplace model evidence for modern deep learning

3. Case study: applying linearised Laplace to design a
prior for x-ray image tomographic reconstruction

Preliminaries

Preliminaries: open problems in deep learning

1 Hidden Layer 5 Hidden Layer 20 Hidden Layer

Model Selection

Overconfidence

https://vitalab.github.io/article/2019/07/11/overconfident.html

Preliminaries: probabilistic inference in NNs

p(θ |x, y) =
p(y | f(θ, x))π(θ)

p(y |x)

1. Place a prior distribution over NN parameters.

2. Define some likelihood function to characterise the
agreement of the NN function with the observations

3. Update the weight distribution using Bayes’ rule

π(θ)

p(y | f(θ, x))
f(θ, ⋅) (y, x)

θ̃ ∈ argmaxθ log p(y | f (θ, x)) + log π(θ)

data fit regulariser

Preliminaries: uncertainty estimation

+

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θ
data fit regulariser

+

p(θ |y, x) =
1

exp(ℳ)
exp(−ℒf(θ)) f(θ, ⋅), θ ∼ p(θ |y, x)

+

Preliminaries: model selection

p(θ |y, x) =
1

exp(ℳ)
exp(−ℒf(θ))ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

ℳ = log p(y |x)

The normalisation constant, , is the marginal likelihood, or model evidence.
It is the probability that our observations where generated by our prior. It provides
an objective for hyperparameter selection without the need for validation data.

ℳ

= log∫ exp(−ℒf(θ))dν= log∫ p(y | f(θ, x))dπ

Preliminaries: automatic Occam’s razor

Preliminaries: the Laplace approximation

Weights

Loss
ℒf (θ) = − log p(y | f(θ, x)) − log π(θ)

θθ̃
ℳ = log∫ exp(−ℒf(θ))dν

For NNs this integral is intractable

Idea: Find a mode of : and perform 2-order Taylor expansionℒf θ̃

Issue: A lot of mass falls in low density region, leading to bad predictions

𝒢f(θ) = ℒf(θ̃) + | |θ − θ̃ | |2
∂2

θℒf (θ̃)

∂2
θℒf(θ̃)

By inspection, is proportional to where exp(−𝒢f,θ̃(θ)) 𝒩(θ̃, (∂2
θℒf (θ̃))−1)

∂2
θℒf (θ̃)) = ∂2

θ log p(y | f (θ̃, x)) + ∂2
θ log π(θ̃) π(θ) → 𝒩(θ; 0, Λ−1)

Preliminaries: the linearised Laplace method

• A Gaussian can be a very poor approximation to the NN posterior

• But it is a very good posterior for a linear model (in some cases exact)

•

• New loss is convex and

• This conjugate Gaussian-linear model has:

• Feature expansion , Design matrix

• Closed form predictive posterior and marginal likelihood

h(θ, ⋅) = f(θ̃, ⋅) + ∂θ f(θ̃, ⋅)(θ − θ̃)

ℒh(θ) ≊ 𝒢h(θ) = ℒh(θ̃) + | |θ − θ̃ | |2
∂2

θℒh(θ̃)

J(⋅) = ∂θ f(θ̃, ⋅) H = ∂2
θℒh(θ̃)

Affine in θ
Jacobian acts as basis expansion

[Mackay, 1992]

Some results: image classification under distribution shift

Baselines:
• MAP

• Diagonal Laplace

• MC Dropout (Gal 2016)

• Deep Ensembles

(Lakshminarayanan 2017)

• SWAG (Maddox 2019)

Corrupted CIFAR10 (Ovadia 2019)

0.00

0.25

0.50

0.75

er
ro
r

Rotated MNIST

Ours
Diag-Lap
Dropout

EnsembleMAP
SWAG 0.2

0.4

Corrupted CIFAR10

0 30 60 90 120 150 180

rotation (�)

�7.5

�5.0

�2.5

0.0

LL

0 1 2 3 4 5

corruption

�3

�2

�1

Model:  
ResNet-18 with 11M weights

Inference:  
Lin Laplace Subnetwork

(Daxberger et. al. 2021)

“Bayesian Deep Learning via Subnetwork Inference”

Test LL

Some questions one might have

• But wait, how did you find a mode of the NN loss to expand around?

• We didn’t, we used SGD and hoped for the best

• How did you deal with modern architecture elements, like batchnorm?

• We used them and hoped for the best

• How did you tune hyperparameters?

• Cross validation — in fact, the choice of Gaussian prior precision makes a large
difference in performance; it controls the size of the errorbars

• What about the model evidence?

• We could not get it to work, it consistently choose prior precisions that overestimated
uncertainty

Λ

— Why doesn’t it work?

Problem illustration

λ = 100 λ = 10 λ = 5

λ = 1 λ = 0.1

Λ = λI
2 hidden layer, 2600 parameter, MLP with batchnorm

Largest ℳθ̃

Adapting the linearised Laplace
method for modern deep learning

On the difficulty of finding a mode of the loss

• In 1992 Mackay did not use stochastic optimisation, early stopping or
normalisation layers

• In modern settings is not a stationary point of

•
θ̃ ℒf

∂θℒf(θ̃) ≠ 0 ⟹ ∂θℒh(θ̃) ≠ 0

Wrong!

ℳθ̃ (Λ) =
−1
2

(| | θ̃ | |2
Λ + logdet(Λ−1H + I)) + C

Not that wrong?

The basis function linear model has a well defined optima

• We know that for any regularisation strength , is convex

• We know that for any linearisation point , is concave

 We can find joint stationary point

Λ ℒh,Λ(θ)

θ ℳθ(Λ)

⟹ (θ⋆, Λ⋆)

ℳθ̃ (Λ) =
−1
2

(| | θ̃ | |2
Λ + logdet(Λ−1H + I)) + C

ℳθ⋆
(Λ) =

−1
2

(| |θ⋆ | |2
Λ + logdet(Λ−1H + I)) + C

Recommendation 1: Keep as linearisation point but θ̃

Following recommendation 1 improves errorbars

Could we find by optimising our network better?θ̃ = θ⋆

What about the choice of Hessian evaluation point?

ℳθ⋆
(Λ) =

−1
2

(| |θ⋆ | |2
Λ + logdet(Λ−1H + I)) + C

Not that wrong?

ResNet image classification task:
most gains come from setting correct
posterior mean in ℳ

In fact, correct for regression!

Studying the effect of normalisation layers

Let with having zero entries in the place of weights to
which normalisation is applied and the opposite is true for , then

θ = θ′ + θ′ ′ θ′

θ′ ′

f(θ′ + θ′ ′ , ⋅) = f(θ′ + kθ′ ′ , ⋅) for k > 0

Definition applies to:
• Batch norm
• Layer norm
• Group norm
• Normalisation-

free ResNets

Normalised networks:

log p(y | f(θ, x))

The MAP solution does not exist for normalised networks

 has a well defined mode
 apply recommendation 1

ℒh(θ) θ⋆
→

ℒh(θ)

θ⋆

| |θ⋆ | |

log p(y |h(θ, x))

⟹ ℒf (θ′ + θ′ ′) > ℒf (θ′ +
1
2

θ′ ′)

Linearisation point can never
be a mode of the posterior since
the posterior has no modes

θ̃

Normalisation introduces scale invariance
f (θ′ + θ′ ′ , ⋅) = f (θ′ + kθ′ ′ , ⋅) for k > 0

ℒf (θ)

ℒf (θ) = log p(y | f(θ, x)) + | |θ | |2
Λ

invariant not invariant

Dependence on scale of linearisation point k

ℒf (θ)
 does not affect NN predictions so it should

not affect the predictive variance!
k

Recommendation 2: learn an independent regulariser for
each normalised group of weights , i.e. θ(n)

log π(θ) ∝ λ′ | |θ′ | |2 + ∑
n

λ(n) | |θ(n) | |2

However, in general, it does!

Systematic analysis (46k param models)

* Fixup is a non-scale invariant alternative to normalisation layers so
recommendation 2 does not apply

Recommendation 1 + Recommendation 2 is best in all cases

Validation on ResNet-50 (23M parameters)

We employ standard KFAC approximation for scalable Hessian computations

Recommendation 1 + Recommendation 2 is best in all cases

Wrapping up: treat your NNs as kernels!

• Linearised Laplace should not be naively applied to modern NNs.

• Every linearisation point defines a tangent linear model. Linearised
Laplace uses this model to provide errorbars. Choosing
hyperparameters using this model’s evidence avoids pathologies.

• Is the tangent linear model a good surrogate for the NN?

• For NNs with linear dense output layers, is in the linear span
of the Jacobian basis expansion

• Furthermore, for normalised networks with dense output layers:

• Linearisation simplifies to and thus
induces a GP prior

θ̃

f(θ̃, ⋅)
J(⋅) = ∂θ f(θ̃, ⋅)

h(θ, ⋅) = J(⋅)θ, θ ∼ 𝒩(0, Λ)
f ∼ GP(0, JΛ−1JT)

Case study: probabilistic inference
with linearised neural networks for

X-ray image reconstruction

A brief primer on inverse problems

• Consider the setting and

• We observe and are tasked with recovering , and

• Clearly the problem is ill posed

• Traditionally, is estimated through regularised reconstruction

• Can we design a Bayesian prior to solve this task?

yδ = Ax + η, η ∼ 𝒩(0, σ2
y I)

yδ ∈ ℝdy x ∈ ℝdx

dx ≫ dy

x

p(x)

The “deep image prior” for inverse problems

• Standard solution: “Deep image prior” f(θ)

argminθ (yδ − Af(θ))2 + λ TV(f(θ))

data fit classical
regulariser

Can be interpreted as a MAP objective given a
prior that constrains reconstructions to be the
output of a U-net and have low TV

From regularised reconstruction to Bayesian inference

• Can build unnormalised prior

• Normalising constant does not admit closed form

• Hessian is 0 almost everywhere can’t use Laplace

• Idea: build surrogate Gaussian prior with a covariance kernel that
enforces TV smoothness

p(f) ∝ exp(−λTV(f))

⟹

f ∼ N(0,K(Λ)), Λ ∼ p(Λ) = Exp(TV(f); λ)
∂TV(f)

∂Λ

Building a probabilistic deep image prior

1.Train U-net with standard objective:

2.Linearise around some acceptable parameter setting

3.Build Bayesian hierarchical model

4.Optimise hyperparameters with marginal likelihood

5.Make predictions (cheap because)

(yδ − Af(θ))2 + TV(f(θ))

θ̃

dy ≪ dx, dθ

yδ ∼ 𝒩(A f, σ2
y I), f ∼ 𝒩(0, JΛ−1JT), Λ ∼ p(Λ) = Exp(TV(f); λ)

∂TV(f)
∂Λ

Optimising hyperparameters with the marginal likelihood

Automatic Relevance Determination

Some results

Calibration comparison

Lin Laplace Dropout

Take-home message 2: use deep learning to build specialised kernels

•We can obtain very powerful task-specific kernels by
training a NN to solve a task and then linearising it.

•Once the network is trained, we the tangent linear model
 provides us with uncertainty

estimates and a model selection objective.
f ∼ GP(0, JΛ−1JT)

Thank you to all my collaborators!

Erik Daxberger

Eric Nalisnick

James Allingham

José Miguel
Hernández-Lobato

David Janz Riccardo Barbano

Bangti JinJohannes Leuschner

Papers discussed

• Preliminaries: Daxberger et. al. “Bayesian Deep Learning via
Subnetwork Inference”, ICML 2021

• Antorán et. al. “Adapting the Linearised Laplace Model Evidence for
Modern Deep Learning”, will be released in next couple of weeks

• Antorán et. al. “A Probabilistic Deep Image Prior for Computational
Tomography”, https://arxiv.org/pdf/2203.00479.pdf

