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Summary

•We identify a pitfall of the linearised Laplace model evidence for NNs with 
normalisation layers (batch norm, layer norm, etc) and provide a simple solution


•We propose a new prior for inference in tangent linear models (linearised NNs)




Preliminaries: linearised Laplace in 4 steps

1. Optimise a NN  to an optima  of some energy function  for

2. Taylor expand  about :

3. Approximate the posterior of the tangent model with a second order expansion about :

4. For a Gaussian prior , estimate model evidence or marginal log-likelihood (MLL)

f(x, w) w⋆ Lf(w) = Gf(w) + R(w)

f w⋆

w⋆

𝒩(0,Λ−1)

Gf(w) = ∑
i

log p(yi | f(xi, w))

h(x, v) = f(x, w⋆) + ∂w f(x, w⋆) ⋅ (v − w⋆)

Gh(v) = ∑
i

log p(yi |h(xi, v)) R(v) = log p(v)

L(w⋆) + ∂vLh(w⋆) ⋅ (v − w⋆) + 0.5(v − w⋆)T∂2
vLh(w⋆)(v − w⋆)

R(w) = log p(w)

Lh(v) = Gh(v) + R(v)

 is a stationary pointw⋆0

ℳ(Λ) = − 0.5 [ | |w⋆ | |2
Λ + log det

H + Λ
Λ ] + C ∂2

vLh(w⋆) = H + Λwith

}Gaussian posterior



Pathologies introduced by normalisation layers

• Normalisation layers are ubiquitous and introduce scale invariance 

Linearisation point found with SGD  —  not a mode of the posteriorw⋆

f(x, w) = f(x, k ⋅ w)

Gf(w) = Gf(k ⋅ w)

• This invariance is not present in the prior

• We can always obtain a larger prior density as 

• Thus there exists no posterior mode (MAP)

p(0.5 ⋅ w)



Pathologies introduced by normalisation layers cont.

• Normalisation layers preclude the existence of an optima of the NN posterior

• Normalisation layers preclude  from being the MAP of the tangent linear model.w⋆

This biases our model evidence estimate

ℳ(Λ) = − 0.5 [ | |w⋆ | |2
Λ + log det

H + Λ
Λ ] + C

Leading to a bad  estimateΛ⋆



Finding a MAP to the lost linearised evidence

• Fortunately, for any linearisation point      there exists a tangent linear model with a well 
defined posterior mode 

w⋆

v⋆

We use the model evidence of this tangent linear model

ℳ(Λ) = − 0.5 [ | |v⋆ | |2
Λ + log det

H + Λ
Λ ] + C



Heterogeneity in the Jacobian basis

• The tangent linear model can be seen as a basis function linear model where the Jacobian of 

 acts as a basis expansion

• However, different columns of the Jacobian have very different scales

• We extend Zellner’s (1996) g-prior to NNs. Same posterior as normalising the second moment of 

J = ∂w f(x, w⋆)

J



Wrapping up 

• Our results also apply to some recent normalisation-free methods. Roughly, these still 
divide layer outputs by the empirical standard deviation of the weights.

Problem: Different elements of the Jacobian basis expansion have very different scales, 
making a single choice of regulariser ineffective.

Solution: We extend the scale-invariant g-prior to the neural network setting.

Problem: Direct application of linearised Laplace to neural networks with normalisation 
layers (batch norm, layer norm, etc) yields spurious model evidence estimates.

Solution: We propose to use the model evidence of the tangent linear model, which does 
not suffer from normalisation-related pathologies.


