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Summary

We identify a pitfall of the linearised Laplace model evidence for NNs with
normalisation layers (batch norm, layer norm, etc) and provide a simple solution

*We propose a new prior for inference in tangent linear models (linearised NNs)



Preliminaries: linearised Laplace in 4 steps

1. Optimise a NN f{xx, w) to an optima w™ of some energy function L{(w) = G{(w) + R(w) for

G(w) = ) log p(y; f(x;, w) R(w) = log p(w)

2. Taylor expand fabout w*:  h(x,v) = f(x, w*) + 9, f(x, w*) - (v — w™*)

L,(v) = G,(v) + R(v) Gy(v) = ) log p(y; | h(x;, v) R(v) = log p(v)

3. Approximate the posterior of the tangent model with a second order expansion about WX

Lw*) + oy, (w™*) - (v = w*) + 0.5 — w*) ! a5L,(w*)(v —
() w7*is a stationary point

*
" }Gaussian posterior

4. For a Gaussian prior 4/(0,A™1), estimate model evidence or marginal log-likelihood (MLL)

H+ A
MN)=—=05|]|w™] \/2\ + log det A + C with ()%Lh(w*) =H+ A




Pathologies introduced by normalisation layers

NN log likelihood

e Normalisation layers are ubiquitous and introduce scale invariance
f(-xa W) :f(xak ) W)
GAw) = Gk - w)

v* /|]o*]

NN log posterior

w* /||w*|]

e This invariance is not present in the prior

e We can always obtain a larger prior density as p(0.5 - w)

® Thus there exists no posterior mode (MAP)

w* /| |w*|] * Linearisation point found with SGD w* — not a mode of the posterior



Pathologies introduced by normalisation layers cont.

NN log posterior

e Normalisation layers preclude the existence of an optima of the NN posterior

o Normalisation layers preclude w™ from being the MAP of the tangent linear model.

This biases our model evidence estimate

2 H+ A
MN) =—=051][w™]]} + logdet A + C

Leading to a bad A* estimate




Finding a MAP to the lost linearised evidence

o Fortunately, for any linearisation point w* ¥k there exists a tangent linear model with a well
. . *
defined posterior mode v™ v Linearised log posterior

We use the model evidence of this tangent linear model

L H+ A
MAN)=—051]]v HA+logdetT + C
—6 —4 —2 0 2 4 6
MLL with NN weights w* MLL with lin weights v*




Heterogeneity in the Jacobian basis

® The tangent linear model can be seen as a basis function linear model where the Jacobian of

J = 0, f(x,w™) acts as a basis expansion

® However, different columns of the Jacobian have very different scales

e We extend Zellner’s (1996) g-prior to NNs. Same posterior as normalising the second moment of J

MLL with lin weights v* g-prior MLL with lin weights v*




Wrapping up

Problem: Direct application of linearised Laplace to neural networks with normalisation
layers (batch norm, layer norm, etc) yields spurious model evidence estimates.

Solution: We propose to use the model evidence of the tangent linear model, which does
not suffer from normalisation-related pathologies.

e Qur results also apply to some recent normalisation-free methods. Roughly, these still
divide layer outputs by the empirical standard deviation of the weights.

Problem: Different elements of the Jacobian basis expansion have very different scales,
making a single choice of regulariser ineffective.

Solution: We extend the scale-invariant g-prior to the neural network setting.




